Estimation of general parameters for sensitive study variables using auxiliary information for finite population
DOI:
https://doi.org/10.47264/idea.nasij/4.1.2Keywords:
Parameter estimators, sensitive variables, inconsistent, randomized response model, simulation studies, auxiliary informationAbstract
The judgment of parameters about the populace is significant for drawing a sample from the population under study in the survey method. Innumerable statisticians introduced numerous estimators to make predictions about the parameters in a population with the application of auxiliary information for sensitive variables. In the current investigation, the researchers tried to depict the general parameter estimate for sensitive variables using randomized response models. The survey was the method in this paper, and a simple random without replacement (SRSWOR) was utilized to gather the sample. Overall, it presented the general ratio and exponential ratio of estimations for the sensitive variable using non-sensitive AV founded on an RRT. The biasness and MSE expressions above second category calculations appeared as outcomes. Many empirical works are replicated to prove the performance of projected estimators for the sensitive variables for the population under study. This proven model will benefit other researchers and statisticians working in the statistics field or data collection, for instance, population census, to take forward it and develop more advanced statistical general parameters, and also for advanced investigations.
References
Adichwal, N. K., Ahmadini, A. A. H., Raghav, Y. S., Singh, R., & Ali, I. (2022). Estimation of general parameters using auxiliary information in simple random sampling without replacement. Journal of King Saud University-Science, 34, 101754. https://doi.org/10.1016/j.jksus.2021.101754 DOI: https://doi.org/10.1016/j.jksus.2021.101754
Adichwal, N. K., Mishra, P., Singh, P., Singh, R., & Yan, Z. (2016). A two parameter ratio-product-ratio type estimator for population coefficient of variation based on SRSWOR. J. Adv. Res. Appl. Math Stat., 1(3&4), 1-5. https://doi.org/10.1007/s40819-015-0073-3 DOI: https://doi.org/10.1007/s40819-015-0073-3
Adichwal, N. K., Sharma, P., & Singh, R. (2017). Generalized class of estimators for population variance using information on two auxiliary variables. IJACM, 3(2), 651-661. https://doi.org/10.1007/s40819-015-0119-6 DOI: https://doi.org/10.1007/s40819-015-0119-6
Adichwal, N. K., Sharma, P., Raghav, Y. S., & Singh, R. (2019). A class of Estimators for population mean utilizing information on auxiliary variables using two phase sampling schemes in the presence of non-response when study variable is an attribute. Pakistan J. Stat., 35(3),187-196.
Aronow, P. M., Coppock, A., Crawford, F. W., & Green, D. P. (2015). Combining list experiment and direct question estimates of sensitive behaviour prevalence. Journal of Survey Statistics and Methodology, 3, 43-66. https://doi.org/10.1093/jssam/smu023 DOI: https://doi.org/10.1093/jssam/smu023
Bahl, S., & Tuteja, R.K. (1991). Ratio and product type exponential estimator. Information and Optimization Sciences, 12, 159–163. DOI: https://doi.org/10.1080/02522667.1991.10699058
Blair, G., &Imai. K. (2012). Statistical analysis of list experiments. Political Analysis, 20, 47-77. https://doi.org/10.1093/pan/mpr048 DOI: https://doi.org/10.1093/pan/mpr048
Blair, G., Imai, K., & Lyall. J. (2014). Comparing and combining list and endorsement experiments: Evidence from Afghanistan. American Journal of Political Science, 58, 1043-1063. https://doi.org/10.1111/ajps.12086 DOI: https://doi.org/10.1111/ajps.12086
Bolfarine, H., & Zacks, S. (1992). Prediction theory for finite populations. Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-2904-9
Bowley, A. L. (1926). Measurements of precision attained in sampling. Bull. Inst. Inte. Statist., 22, 1-62.
Bullock, W., Imai, K., & Shapiro, J. N. (2011). Statistical analysis of endorsement experiments: measuring support for militant groups in Pakistan. Political Analysis, 19, 363-84. https://doi.org/10.1093/pan/mpr032 DOI: https://doi.org/10.1093/pan/mpr031
Chand, L. (1975). Some ratio-type estimators based on two or more auxiliary variables. Ph.D. Thesis, Iowa State University, Ames, Iowa. https://core.ac.uk/download/pdf/38912792.pdf
Cochran, W. G. (1940). The estimation of the yields of the cereal experiments by sampling for the ratio of grain to total produce. Journal of Agricultural Science, 30, 262-275. http://dx.doi.org/10.1017/S0021859600048012 DOI: https://doi.org/10.1017/S0021859600048012
Das, A. K., & Tripathi, T. P. (1978). Use of auxiliary information in estimating the finite population variance. Sankhya C, 40, 139-148.
Deville, J. C., & Sarndal, C.E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association. 87, 376. https://doi.org/10.1080/01621459.1992.10475217 DOI: https://doi.org/10.1080/01621459.1992.10475217
Eichhorn, B. H., & Hayre, L. S. (1983). Scrambled randomized response models for obtaining sensitive quantitative data. Journal of Statistical Planning and Inference, 7, 307-316. DOI: https://doi.org/10.1016/0378-3758(83)90002-2
Gonzalez-Ocantos, E., de Jonge, C. K., Mele´ndez, C., Osorio, J., & Nickerson, D. W. (2012). Vote buying and social desirability bias: Experimental evidence from Nicaragua. American Journal of Political Science, 56, 202-17. https://doi.org/10.1111/j.1540-5907.2011.00540.x DOI: https://doi.org/10.1111/j.1540-5907.2011.00540.x
Grover, L. K., Kaur, P., & Vishawkarma G. K. (2012). Product type exponential estimators of population mean under linear transformation of auxiliary variable in simple random sampling. Applied Mathematics and Computation, 219, 1937-1946. https://doi.org/10.1016/j.amc.2012.08.036 DOI: https://doi.org/10.1016/j.amc.2012.08.036
Gupta, S., & Shabbir, J. (2008). On estimating in estimating the population mean in simple random sampling. J. Appl. Stat., 35(5), 559–566. https://doi.org/10.1080/02664760701835839 DOI: https://doi.org/10.1080/02664760701835839
Hartley, H., & Ross, A. (1954) Unbiased Ratio Estimates. Nature, 174, 270-271. https://doi.org/10.1038/174270a0 DOI: https://doi.org/10.1038/174270a0
Hansen, M. H., Hurwitz, W.N., & Madow, W.G. (1953). Sample survey methods and theory (Volume I). John Wiley and Sons.
Hansen, M. M., & Hurwitz, W. N. (1943). On the theory of sampling from finite populations. Annals of Mathematical Statistics, 14, 333-362. DOI: https://doi.org/10.1214/aoms/1177731356
Haq, A., Khan, M., & Hussain, Z. (2017). A new estimator of finite population mean based on the dual use of the auxiliary information. Communications in Statistics - Theory and Methods, 46(9), 4425–4436. https://doi.org/10.1080/03610926.2015.1083112 DOI: https://doi.org/10.1080/03610926.2015.1083112
Hussain, Z., Shabbir, J., & Gupta, S. (2007). An alternative to Ryu et al. randomized response model. Journal of Statistics & Management Systems, 10(4), 511-517. DOI: https://doi.org/10.1080/09720510.2007.10701269
Isaki, C. T. (1983). Variance estimation using auxiliary information. Journal of American Statistical Association, 381, 117-123. DOI: https://doi.org/10.1080/01621459.1983.10477939
Jhajj, H. S., Sharma, M. K., & Grover, L. K. (2007). A wide and efficient class of estimators of population variance under sub-sampling scheme. Model Assisted Statistics and Applications, 2(1), 41–51. https://doi.org/10.3233/MAS-2007-2106 DOI: https://doi.org/10.3233/MAS-2007-2106
Kadilar, C., & Cingi, H. (2004) Ratio estimators in simple random sampling. Applied Mathematics and Computation, 151, 893-902. https://doi.org/10.1016/S0096-3003(03)00803-8 DOI: https://doi.org/10.1016/S0096-3003(03)00803-8
Kadilar, C., & Cingi, H. (2006). Improvement in variance estimation using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 35(1), 111-115.
Karp, J. A., & Brockington, D. (2005). Social desirability and response validity: A comparative analysis of over reporting voter turnout in five countries. Journal of Politics, 67, 825-40. https://doi.org/10.1111/j.1468-2508.2005.00341.x DOI: https://doi.org/10.1111/j.1468-2508.2005.00341.x
Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N., & Smarandache, F. (2007). A general family of estimators for estimating population means using known value of some population parameter(s). Far East J. Stat., 22(2), 181-191
Kiregyra, B. (1984). A regression-type estimator using two auxiliary variables and model of double sampling from finite populations. Metrika, 31, 215-226. https://doi.org/10.1007/BF01915203 DOI: https://doi.org/10.1007/BF01915203
Lyall, J., Blair, G., & Imai, K. (2013). Explaining Support for Combatants during Wartime: A Survey Experiment in Afghanistan. American Political Science Review, 107, 679-705. DOI: https://doi.org/10.1017/S0003055413000403
Martin, L. M., Leff, M., Calonge, N., Garrett, C., and Nelson, D.E. (2000). Validation of self-reported chronic conditions and health services in a managed care population. American Journal of Preventive Medicine, 18, 215-221. https://doi.org/10.1016/s0749-3797(99)00158-0 DOI: https://doi.org/10.1016/S0749-3797(99)00158-0
Mishra, P., & Singh, R. (2017). A new log-product type estimator using auxiliary information. J. Sci. Res., 61 (1&2), 179-183
Mohanty, S. (1967). Combination of regression and ratio estimate. Journal of Indian Statistical Association, 5, 16-19.
Mukerjee, R., Rao, T. J., & Vijayan, K. (1987). Regression-type estimators using multiple auxiliary information. Australian Journal of Statistics, 29(3), 244-254. https://doi.org/10.1111/j.1467-842X.1987.tb00742.x DOI: https://doi.org/10.1111/j.1467-842X.1987.tb00742.x
Neyman, J. (1938). Contribution to the theory of sampling human populations. Journal of the American Statistical Association, 33, 101-116. http://dx.doi.org/10.1080/01621459.1938.10503378 DOI: https://doi.org/10.1080/01621459.1938.10503378
Olkin, I. (1958). Multivariate ratio estimation for finite populations. Biometrika, 45, 154-165. DOI: https://doi.org/10.1093/biomet/45.1-2.154
Onyango, R., Oduor, B., Odundo, F. (2022). Mean estimation of a sensitive variable under nonresponse using three-stage rrt model in stratified two-phase sampling. Journal of Probability and Statistics, 14, 4530120. https://doi.org/10.1155/2022/4530120 DOI: https://doi.org/10.1155/2022/4530120
Oral, E., & Kadilar, C. (2011). Robust ratio-type estimators in simple random sampling. Journal of the Korean Statistical Society, 40(4), 457–467. https://doi.org/10.1016/j.jkss.2011.04.001 DOI: https://doi.org/10.1016/j.jkss.2011.04.001
Pollock, K. H., & Yuksel, B. (1976). A comparison of three randomized response models for quantitative data. Journal of the American Statistical Association, 71, 356, 884-886. https://doi.org/10.1080/01621459.1976.10480963 DOI: https://doi.org/10.1080/01621459.1976.10480963
Raj, D. (1965). On a method of using multi-auxiliary information in sample surveys. Journal of American Statistical Association, 60(309), 270-277. http://dx.doi.org/10.1080/01621459.1965.10480789 DOI: https://doi.org/10.1080/01621459.1965.10480789
Rao, P. S. R. S., & Mudholkar, G. S. (1967). Generalized multivariate estimators for thee mean of a finite population. Journal American Statistical Association, 62, 1009-1012. https://doi.org/10.1016/S0169-7161(88)06020-1 DOI: https://doi.org/10.1080/01621459.1967.10500911
Robson, D. S. (1957). Applications of multivariate polykays to the theory of unbiased ratio-type estimation. J. Amer. Statist. Assoc., 52, 511-522. http://dx.doi.org/10.1080/01621459.1957.10501407 DOI: https://doi.org/10.1080/01621459.1957.10501407
Rosenfeld, B., Imai, K., & Shapiro, J. (2016). An empirical validation study of popular survey methodologies for sensitive questions. American Journal of Political Science, 60, 783-802. DOI: https://doi.org/10.1111/ajps.12205
Roy, D. C. (2003). A regression-type estimator in two-phase sampling using two auxiliary variables. Pakistan Journal of Statistics, 19(3), 281- 290.
Rueda, M. and Cebrian, A. A. (1996). Repeated substitution method the ratio estimator for the population variance. Metrika, 43, 101-105 DOI: https://doi.org/10.1007/BF02613900
Ryu, C., Hu, C. H., Locy, R. D., & Kloepper, J. W. (2005). Study of Mechanism for Plant growth promoted by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268, 285-292. https://doi.org/10.1007/s11104-004-0301-9 DOI: https://doi.org/10.1007/s11104-004-0301-9
Saleem, I. (2017). Some contributions to scramble randomized response technique using auxiliary variable for parameters in finite population. PhD Thesis, National College of Business and Economics, Lahore, Pakistan.
Samiuddin M., & Hanif M. (2007). Estimation of population mean in single- and two-phase sampling with or without additional information. Pak. J. Statist., 23(2), 99-118.
Shabbir, J., & Gupta, S. (2010). On estimating finite population mean in simple and stratified random sampling. Communications in Statistics Theory and Methods, 40(2), 199-212. DOI: https://doi.org/10.1080/03610920903411259
Shabbir, J., & Gupta, S. (2007). On estimating the finite population mean with known population proportion of an auxiliary variable. Pakistan J. Stat., 23, 1-9.
Sharma, P., Verma, H. K., Adichwal, N. K., & Singh, R. (2017). Generalized estimators using characteristics of Poisson distribution. Int. J. Appl. Comput. Math, 3(2), 745-755. https://doi.org/10.48550/arXiv.1502.02343 DOI: https://doi.org/10.1007/s40819-015-0122-y
Shukla, N. D. (1971). Systematic sampling and product method of estimation. Proceeding of the all-India Seminar on Demography and Statistics, Varanasi, India.
Singh, H. P., & Solanki, R. S. (2011). Generalized ratio and product methods of estimation in survey sampling. Pak. J. Stat. Oper. Res., 7, 245-264. https://doi.org/10.18187/pjsor.v7i2.189 DOI: https://doi.org/10.18187/pjsor.v7i2.189
Singh, M.P. (1967). Ratio cum product method of estimation. Metrika, 12, 34-42. DOI: https://doi.org/10.1007/BF02613481
Singh, R., Chauhan, P., Sawan, N. & Smarandache, F. (2011). Improved exponential estimator for population variance using two auxiliary variables. Italian Journal Pure and Applied Mathematics, 28(N), 101-108. https://doi.org/10.48550/arXiv.0902.0126
Singh, R., Kumar, M., Chaudhary, O. K., Kadilar, C. (2009). Improved Exponential Estimator in Stratified Random Sampling. Pak. J. Stat. Oper. Res., 5(2), 67-82. DOI: https://doi.org/10.18187/pjsor.v5i2.118
Singh, R., Kumar, M., & Smarandache, F. (2008). Almost unbiased estimator for estimating population mean using known value of some population parameter(s). Pak.J. Stat. Oper.Res., 4(2), 63-76. https://doi.org/10.18187/pjsor.v4i2.50 DOI: https://doi.org/10.18187/pjsor.v4i2.50
Singh, H.P., &Singh, R. (2001). Improved ratio-type estimator for variance using auxiliary information. J.I.S.A.S., 54(3), 276-287.
Solanki, R. S., & Srivastava, S. K. (1965). An estimation of mean of a finite population using several auxiliary variables. Journal of Indian Statistical Association, 3, 189-194.
Sousa, R., Shabbir, J., Real, P. C., & Gupta, S. (2010). Ratio Estimation of the Mean of a Sensitive Variable in the Presence of Auxiliary Information. Journal of Statistical Theory and Practice, 4(3), 495-507. https://doi.org/10.1080/15598608.2010.10411999 DOI: https://doi.org/10.1080/15598608.2010.10411999
Srivastava, S. K. (1967a). An estimator using auxiliary information in sample surveys. Journal of Indian Statistical Association, 16, 121-132. DOI: https://doi.org/10.1177/0008068319670205
Srivastava, S. K. (1967b). A generalized estimator for the mean of finite population using multi-auxiliary information. Journal of Indian Statistical Association, 16, 121-132
Srivastava, S. K., & Jhajj, H. S. (1980). A class of estimators using auxiliary information for estimating finite population variance. Sankhya C, 4, 87–96
Srivastava, S. K., Khare, B. B., & Srivastava, S. R. (1990). A generalized chain ratio estimator for mean of finite population. Journal of Indian Society of Agricultural Statistics, 42, 108-117.
Srivastava, S.K., & Jhajj, H. S. (1981). A Class of Estimators of the Population Mean in Survey Sampling Using Auxiliary Information. Biometrika, 68, 341-343. DOI: https://doi.org/10.1093/biomet/68.1.341
Srivastava, S. K., & Jhajj, H. S. (1986). On the estimation of finite population correlation coefficient. J. Ind. Soc. Agric. Stat., 38, 82-91
Srivenkataramana, T. (1980). A dual to ratio estimator in sample surveys. Biometrika, 67(1), 199- 204. http://dx.doi.org/10.1093/biomet/67.1.199 DOI: https://doi.org/10.1093/biomet/67.1.199
Subramani, J., & Kumarapandiyan, G. (2012a). Variance estimation using median of the auxiliary variable. International Journal of Probability and Statistics, 1(3), 36–40. https://doi.org/10.5923/j.ijps.20120103.02 DOI: https://doi.org/10.5923/j.ijps.20120103.02
Subramani, J., & Kumarapandiyan, G. (2012b). Variance estimation using quartiles and their functions of an auxiliary variable. International Journal of Statistics and Applications, 2(5), 67–72. https://doi.org/10.5923/j.statistics.20120205.04 DOI: https://doi.org/10.5923/j.statistics.20120205.04
Swain, A.K.P.C. (1964). The use of systematic sampling ratio estimate, Journal of the Indian Statistical Association, 2, 160–164.
Tracy, D. S., Singh, H. P., & Singh, R. (1996). An alternative to ratio-cum-product estimator in sample surveys. J.S.P.I., 53, 375-387. https://doi.org/10.1016/0378-3758(95)00136-0 DOI: https://doi.org/10.1016/0378-3758(95)00136-0
Tripathi, T. P. (1970). Contributions to the sampling theory in multivariate information. Ph.D. Thesis, Punjabi University, Patiala, India.
Tripathi, T.P. (1973). Double sampling for inclusion probabilities and regression method of estimation. J. Ind. Statist. Assoc., 10, 33-46.
Tripathi, T. P. (1976). On double sampling for multivariate ratio and difference method of estimation. J. Ind. Statist. Assoc., 33, 33-54.
Tripathi, T. P., Singh, H. P., Upadhyaya, L. N. (1988). A generalized method of estimation in double sampling. Estimation of mean on second occasion using pps sampling and multivariate information. J. Indian Soc. Agric. Stat., 26, 91–101.
Upadhyaya, L. N., Singh, H. P. Chatterjee, S., & Yadav, R. (2011). Improved ratio and product exponential type estimators. Journal of Statistical Theory and Practice, 5(2), 285-302. https://doi.org/10.1080/15598608.2011.10412029 DOI: https://doi.org/10.1080/15598608.2011.10412029
Van der Heijden, P. G., van Gils, G., Bouts, J., & Hox. J. J. (2000). A comparison of randomized response, computer-assisted self-interview, and face-to-face direct questioning: Eliciting sensitive information in the context of welfare and unemployment benefit. Sociological Methods and Research, 28, 505-37. https://doi.org/10.1177/0049124100028004005 DOI: https://doi.org/10.1177/0049124100028004005
Warner, S. L. (1971). Linear Randomized Response Models. Journal of the American Statistical Association, 66, 884-888. DOI: https://doi.org/10.1080/01621459.1971.10482364
Warner, S. L. (1965). Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. Journal of the American Statistical Association, 60(309), 63-69. https://doi.org/10.1080/01621459.1965.10480775 DOI: https://doi.org/10.1080/01621459.1965.10480775
Wolter, F., & Preisendorfer, P. (2013). Asking sensitive questions: An evaluation of the randomized response technique versus direct questioning using individual validation data. Sociological Methods and Research, 42, 321-53. https://doi.org/10.1177/0049124113500474 DOI: https://doi.org/10.1177/0049124113500474
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Amjad Mahmood, Nadia Mushtaq, Muhammad Hanif , Farhad Hussain

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please click here for details about the Licensing and Copyright policies of NASIJ.