Wavelet analysis based VTEC variability over mid-latitude region Sukkur, Pakistan and its comparison with IRI models during 2019-2020

Authors

  • Rasim Shahzad Department of Space Sciences, Space Education and GNSS Lab, National Centre of GIS and Space Application, Institute of Space Technology (IST), Islamabad, Pakistan. https://orcid.org/0000-0002-1430-430X
  • Amna Hafeez Department of Space Sciences, Space Education and GNSS Lab, National Centre of GIS and Space Application, Institute of Space Technology (IST), Islamabad, Pakistan.
  • Jose Francisco de Oliveira-Junior Engineering School, Postgraduate Program in Biosystems Engineering, Federal University Fluminense (UFF), Niterói, Rio De Janeiro, Brazil. https://orcid.org/0000-0002-6131-7605
  • Arslan Ahmed Department of Electrical Engineering, National Skills University, Islamabad, Pakistan. https://orcid.org/0000-0002-5101-8134
  • Punyawi Jamjareegulgarn King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, Thailand. https://orcid.org/0000-0003-1259-1883
  • Najam Abbas Naqvi Department of Space Sciences, Space Education and GNSS Lab, National Centre of GIS and Space Application, Institute of Space Technology (IST), Islamabad, Pakistan.

DOI:

https://doi.org/10.47264/idea.nasij/3.1.2

Keywords:

VTEC, GPS, IRI models, wavelet transformation, geomagnetic storms, ionosphere, mid-latitude

Abstract

The Total Electron Content (TEC) from the Sukkur GPS station is studied during the final phase of the solar cycle 24 and the initial phase of solar cycle 25 (2019-2020). TEC comparisons are made with three international reference ionospheric models: IRI-2007, IRI-2012 and IRI-2016. The finding of the study indicates that IRI-2016 is better than IRI-2007 and IRI-2012 in monthly values using wavelet transformation. Moreover, the seasonal variations between observed and modelled VTEC were observed maximum during the spring season. Similarly, the IRI-2016 exhibited maximum correlation (i.e., r > 0.8) as compared to the other two models for both solar cycle phases. This study also includes a cross-correlation of GPS-VTEC with several storm indices (Kp, Dst, Ap) via wavelet transformation. In this paper, the wavelet spectrum is analysed for two-year data (2019-2020) to visualize the impact of geomagnetic storm indices on VTEC. Storms of different intensities during 2019-2020 solar activity were also analysed, where maximum correlation from wavelet transformation between GPS VTEC and geomagnetic indices was recorded during the initial solar phase of cycle 25. These kinds of studies assist to correct the measured GPS VTEC and help to improve predicted VTEC over mid-latitude regions.

References

Aa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., Chen, Y., Shen, H., Yuan, T., Li, J., & Wang, T. (2018). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16(3), 321–331. https://doi.org/10.1002/2017SW001776

Ansari, K., Panda, S. K., Althuwaynee, O. F., & Corumluoglu, O. (2017). Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophysics and Space Science, 362(9), 178. https://doi.org/10.1007/s10509-017-3159-z

Ansari, K., Panda, S. K., & Corumluoglu, O. (2018). Mathematical Modelling of Ionosperic TEC from Turkis permanent GNSS Network (TPGN) Observables during 2009–2017 and predictability of NeQuick and Kriging models. Astrophysics and Space Science, 363(42), 1-13. https://doi.org/10.1007/s10509-018-3261-x

Araujo-Pradere, E. A., Fuller-Rowell, T. J., & Codrescu, M. V. (2002). TORM: An empirical storm-time ionospheric correction model 1. Model description. Radio Sciences, 37(5), 1070. https://doi.org/10.1029/2001RS002467

Arikan, F., Erol, C, B., & Arikan, O. (2003). Regularized estimation of vertical total electron content from Global Positioning System data. Journal of Geophysical Research Atmospheres, 108(A12). https://doi.org/10.1029/2002JA009605

Arikan, F., Arikan, O., & Erol, C.B. (2007). Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model. Advances in Space Research. 39(5), 867-874. https://doi.org/10.1016/j.asr.2007.01.082.

Arikan, F., Nayir, H., Sezen, U., & Arikan, O. (2008). Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science, 43(4),1-13. https://doi.org/10.1029/2007RS003785.

Belehaki, A., Jakowski, N., & Reinisch, B. (2003). Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values. Radio Sciences., 38(6), 1105. https://ieeexplore.ieee.org/abstract/document/7770735/

Bhawre, D. P., Purushottam, Mansoori, A. A., & Yadav, R. (2011). The response of polar, equatorial and low latitude ionosphere to the minor magnetic disturbance of 11 October 2008. International Journal of Engineering Science and Technology, 3(1).

Bhuyan, P. K., & Borah, R. R. (2007). TEC derived from GPS network in India and comparison with the IRI. Advances in Space Research, 39(5), 830-840. https://doi.org/10.1016/j.asr.2006.12.042

Bilitza, D. (1986). International reference ionosphere: Recent developments. Radio Science, 21(3), 343-346. https://doi.org/10.1029/RS021i003p00343Citations.

Bilitza, D. (1990). International reference ionosphere 1990. Science Applications Research Lanham Maryland, USA. https://ntrs.nasa.gov/api/citations/19910021307/downloads/19910021307.pdf

Bilitza, D. (2001). International reference ionosphere 2000. Radio Science, 36(2), 261–275. https://doi.org/10.1029/2000RS002432

Cander, L. R. (2016). Re-visit of ionosphere storm morphology with TEC data in the current solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 138-139, 187-205. https://doi.org/10.1016/j.jastp.2016.01.008

Chakraborty, M., Kumar, S., Kumar, B., & Guha, A. (2014). Latitudinal characteristics of GPS derived ionospheric TEC: A comparative study with IRI 2012 model. Annals of Geophysics, 57(5), A0539. https://doi.org/ 10.4401/ag-6438

Coïsson, P., & Radicella, S. M. (2005). Ionospheric topside models compared with experimental electron density profiles. Annals of Geophysics, 48(3), 497-503. https://doi.org/ 10.4401/ag-3214.

Coïsson, P., Radicella, S., Nava, B., & Leitinger, R. (2008). Low and equatorial latitudes topside in NeQuick. Journal of Atmospheric and Solar-Terrestrial Physics, 70(6), 901–906. https://doi.org/10.1016/j.jastp.2007.05.017

Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83, 191-198. https://doi.org/10.1007/s00190-008-0300-3

Ezquer, R.G., Scidá, L. A., Orué, Y. M., Nava, B., Cabrera, M. A., & Brunini, C. (2018). NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Advances in Space Research, 61(7), 1803-1818. https://doi.org/10.1016/j.asr.2017.10.003

Fro?, A., Galkin, I., Krankowski, A., Bilitza, D., Hernández-Pajares…& García-Rigo, A. (2020). Towards cooperative global mapping of the ionosphere: Fusion feasibility for IGS and IRI with global climate VTEC map. Remote Sensing, 12(21), 3531. https://doi.org/10.3390/rs12213531

Gordiyenko, G. I., & Yakovets, A. F. (2017). Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations. Advances in Space Research, 60(2), 461–474. https://doi.org/10.1016/j.asr.2017.01.006

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys, 11, 561–566. https://doi.org/10.5194/npg-11-561-2004

Guedes, M. R. G., Pereira, E. S., & Cecatto, J. R. (2015). Wavelet analysis of CME, X-ray flare, and sunspot series. Astronomy & Astrophysics, 573. https://doi.org/10.1051/0004-6361/201323080

Heki, K., & Enomoto, Y. (2013). Pre seismic ionospheric electron enhancements revisited. Journal of Geophysical Research: Space Physics, 118(10), 6618–26. https://doi.org/10.1002/jgra.50578

Hussain, A., & Shah, M. (2020). Comparison of GPS TEC with IRI models of 2007, 2012, and 2016 over Sukkur, Pakistan. Natural and Applied Sciences International Journal (NASIJ), 1(1), 1–10. https://doi.org/10.47264/idea.nasij/1.1.1

Inyurt, S., Yildirim, O., Mekik, Ç. (2017). Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea. Annales Geophysicae, 35(4), 817–24. https://doi.org/10.5194/angeo-35-817-2017.

Ioannides, R.T., & Strangeways, H. J. (2000). Ionosphere-induced errors in GPS range finding using MQP modelling, ray-tracing and nelder-mead optimization. In Millennium Conference on Antennas and Propagation Switzerland, 2, 404–408.

Jin, S., Jin, R., & Kutoglu, H. (2017). Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations. Journal of Geodesy, 91(6), 613-626. https://link.springer.com/article/10.1007/s00190-016-0988-4

Klobuchar, J. A. (1987). Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems, AES-23(3), 325–31. https://doi.org/10.1109/TAES.1987.310829

Kumar, S., Tan, E. L., & Murti, D. S. (2015). Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes. Earth Planets Space, 67, 42. https://doi.org/10.1186/s40623-015-0205-3

Li, F., & He, L. (2017). The effects of dominant driving forces on summer precipitation during different periods in Beijing. Atmosphere, 8(3), 44. https://doi.org/10.3390/atmos8030044.

Liu, A., Ningho, W., Zishen, L., Zhiyu, W., & Hong, Y. (2019). Assessment of NeQuick and IRI-2016 models during different geomagnetic activities in global scale: Comparison with GPS-TEC, dSTEC, Jason-TEC and GIM. Advances in Space Ressearch, 63(12), 3978–3992. https://doi.org/10.1016/j.asr.2019.02.032

Matamba, T.M., Habarulema, J.B., & Burešová, D. (2016). Mid latitude ionospheric changes to four great geomagnetic storms of solar cycle 23 in Southern and Northern Hemispheres. Space Weather, 14(12), 1155–1171. https://doi.org/10.1002/2016SW001516.

Mehmood, M., Filijar, R., Saleem, S., Shah, M., & Ahmad, A. (2021). TEC derived from local GPS network in Pakistan and comparison with IRI-2016 and IRI-PLAS 2017. Acta Geophysica, 69, 381–389. https://doi.org/10.1007/s11600-021-00538-0.

Mosert, M., Gende, M., Brunini, C., Ezquer, R., & Altadill, D. (2007). Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro. Advances in Space Research, 39, 841–847.

Mukesh, R., Soma, P., Sindhu, P., & Elangovan, R. R. (2018). Comparison of total electron content of IRNSS with IRI and GPS-TEC at equatorial latitude station. AIP Conference Proceedings 2039. https://doi.org/10.1063/1.5079004.

Natali, M. P., & Meza, A. (2017). PCA and VTEC climatology at midnight over mid-latitude regions. Earth Planets and Space, 69(1). 1399. https://doi.org/10.1186/s40623-017-0757-5

Olwendo, O. J., Baki, P., Cilliers, P. J., Mito, C., & Doherty, P. (2013). Comparison of GPS TEC variations with IRI-2007 TEC prediction at equatorial latitudes during a low solar activity (2009–2011) phase over the Kenyan region. Advances in Space Research, 52(10), 1770–79. https://doi.org/10.1016/j.asr.2012.08.001

Rawer, K., Bilitza, D., & Ramakrishan, S. (1978). Goals and status of the International Reference Ionosphere. Reviews of Geophysics and Space Physics, 16(2), 177-181. https://doi.org/10.1029/RG016i002p00177

Rahman, Z. U. (2020). Possible seismo ionospheric anomalies before the 2016 Mw 7.6 Chile earthquake from GPS TEC, GIM TEC and Swarm Satellites. Natural and Applied Sciences International Journal (NASIJ), 1(1), 11–20. https://doi.org/10.47264/idea.nasij/1.1.2

Shahzad, R., Shah, M., & Ahmad, A. (2021). Comparison of VTEC from GPS and IRI-2007, IRI-2012 and IRI-2016 over Sukkur Pakistan. Astrophysics and Space Science, 366, 42. https://doi.org/10.1007/s10509-021-03947-1

Sharma, S. K., Ansari, K., & Panda, S. K. (2018). Analysis of ionospheric TEC variation over Manama, Bahrain, and Comparison with IRI-2012 and IRI-2016 Models. Arabian Journal for Science and Engineering, 43, 3823–3830. https://doi.org/10.1007/s13369-018-3128-z.

Shah, M., Aibar, A. G., Tariq, M. A., Ahmed, J., & Ahmed, A. (2020). Possible ionosphere and atmosphere precursory analysis related to Mw > 6.0 earthquakes in Japan. Remote Sensing of Environment, 239, 111620. https://doi.org/10.1016/j.rse.2019.111620

Shim, J. S., Tsagouri, I., Goncharenko, L., Rastaetter, L., Kuznetsova, M., …. & Förster, M., (2018). Validation of ionospheric specifications during geomagnetic storms: TEC and foF2 during the 2013 March storm event. Space Weather, 16(11), 1686–1701. https://doi.org/10.1029/2018SW002034

Tariku, Y. A. (2016). The study of variability of TEC over mid-latitude American regions during the ascending phase of solar cycle 24 (2009– 2011). Advances in Space Research, 58, 598–608.

Tariku, Y. A., 2019. Testing the improvement of performance of the IRI model in the estimation of TEC over the mid-latitude American regions. Advances in Space Research, 63(7), 2066-2074. https://doi.org/10.1016/j.asr.2018.12.009

Tariq, M. A., Shah, M., Ulukavak, M., M., & Iqbal, T. (2019). Comparison of TEC from GPS and IRI-2016 model over different regions of Pakistan during 2015–2017. Advances in Space Research, 64, 707-718. https://doi.org/10.1016/j.asr.2019.05.019

Tariq, M. A., Shah, M., Inyurt, S., Shah, M. A., & Liu, L. (2020). Comparison of TEC from IRI-2016 and GPS during the low solar activity over Turkey. Astrophysics and Space Science, 365(179). https://doi.org/10.1007/s10509-020-03894-3

Timoçin, E., Ünal, I., & Göker, U. D. (2018). A comparison of IRI-2016 foF2 predictions with the observations at different latitudes during geomagnetic storms. Geomagnetism and Aeronomy, 58(7), 846–56. https://doi.org/10.1134/S0016793218070216

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61-78. https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2

Wu, C.C., Fry, G., Liu, J.Y., Liou, K., & Tseng, C.L. (2004). Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996–August 1997. Journal of Atmospheric and Solar-Terrestrial Physics, 66(3–4), 199–207. https://doi.org/10.1016/j.jastp.2003.09.017

Published

2022-06-30

How to Cite

Shahzad, R., Hafeez, A. ., de Oliveira-Junior, J. . F., Ahmed, A. ., Jamjareegulgarn, P. ., & Naqvi, N. A. . (2022). Wavelet analysis based VTEC variability over mid-latitude region Sukkur, Pakistan and its comparison with IRI models during 2019-2020. Natural and Applied Sciences International Journal (NASIJ), 3(1), 13–33. https://doi.org/10.47264/idea.nasij/3.1.2

Issue

Section

Original Research Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.