A comparative analysis and prediction of the economic growth of Pakistan using machine learning models
DOI:
https://doi.org/10.47264/idea.nasij/5.1.6Keywords:
GDP, ARIMA, MLP, MNAR, Gross domestic product, Multilayer perceptron, Hybrid model, Neural network, Machine learning, Economic growth, Economic development, Prediction accuracyAbstract
This article investigates a comparative analysis of machine learning models for Pakistan's Gross Domestic Product (GDP), an important indicator of the nation's economic development. GDP is crucial to assess well-versed decisions. Since machine learning techniques are more sophisticated, much interest has been developed in predicting GDP to handle complex data patterns and enhance prediction accuracy. In this study, we evaluated the performance of a variety of machine learning algorithms like Auto-Regressive Integrated Moving Average (ARIMA), double exponential smoothing, Multilayer Perceptron (MLP), Neural Network Auto-Regressive (NNAR), and hybrid machine learning models on data from 1960 to 2022. The MLP used in Artificial Neural Networks (ANNs) outperforms based on the outcomes. This comparative analysis provides insights into the most suitable model for accurate prediction of Pakistani GDP for the years 2023 to 2032. This article provides a detailed analysis of various machine learning models used to predict Pakistan's GDP accurately. GDP prediction is an essential indicator of a nation's economic development and is crucial in making informed decisions. With the advancements in machine learning techniques, there has been a growing interest in predicting GDP due to their efficiency in handling complex data patterns and improving prediction accuracy.
References
Abonazel, M. R., & Abd-Elftah, A. I. (2019). Forecasting Egyptian GDP using ARIMA Models. Reports on Economics and Finance, 5(1), 35–47. https://www.m-hikari.com/ref/ref2019/ref1-2019/p/abonazelREF1-2019.pdf DOI: https://doi.org/10.12988/ref.2019.81023
Agrawal, V. (2018). GDP modelling and forecasting using ARIMA: An Empirical Study from India. Central European University, Budapest.
Almarashi, A. M., Daniyal, M., & Jamal, F. (2024). Modelling the GDP of KSA using linear and nonlinear NNAR and hybrid stochastic time series models. PLoS ONE 19(2), e0297180. https://doi.org/10.1371/journal.pone.0297180 DOI: https://doi.org/10.1371/journal.pone.0297180
Alonso, A., & Carbó, J. M. (2021). Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation. Banco de Espana Working Paper No. 2105. http://dx.doi.org/10.2139/ssrn.3774075 DOI: https://doi.org/10.2139/ssrn.3774075
Bhardwaj, V., Bhavsar, P., & Patnaik, D. (2022). Forecasting GDP per capita of OECD countries using machine learning and deep learning models. In 2022 Interdisciplinary Research in Technology and Management (IRTM) (pp. 1–6). https://doi.org/10.1109/IRTM54583.2022.9791714 DOI: https://doi.org/10.1109/IRTM54583.2022.9791714
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: forecasting and control. Holden-Day.
Dong, Z., & Zhu, G. (2014). A modified exponential smoothing model for forecasting per capita GDP in Yunnan minority area. Applied Mechanics and Materials, 599–601. https://doi.org/10.4028/www.scientific.net/AMM.599-601.2074 DOI: https://doi.org/10.4028/www.scientific.net/AMM.599-601.2074
Dongdong, W. (2010). The consumer price index forecast based on ARIMA Model. WASE International Conference on Information Engineering, Beidai, China (pp. 307–310). https://doi.org/10.1109/ICIE.2010.79 DOI: https://doi.org/10.1109/ICIE.2010.79
Dritsaki, C. (2015). Forecasting real GDP rate through econometric models: An empirical study from Greece. Journal of International Business and Economics, 3, 13–19. https://doi.org/10.15640/jibe.v3n1a2 DOI: https://doi.org/10.15640/jibe.v3n1a2
Ghazo, A. (2021). Applying the ARIMA Model to the process of forecasting GDP and CPI in the Jordanian economy. International Journal of Financial Research, 12(3), 70–77. https://doi.org/10.5430/ijfr.v12n3p70 DOI: https://doi.org/10.5430/ijfr.v12n3p70
Inoue, A., & Kilian, L. (2008). How useful is bagging in forecasting economic time series? a case study of U.S. consumer price inflation. Journal of the American Statistical Association, 103, 511–522. DOI: https://doi.org/10.1198/016214507000000473
Kenny, D. A., Kashy, D., & Bolger, N. (1998). Data analysis in social psychology. In D. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), Handbook of social psychology (pp. 233–265). McGraw-Hill.
Kharimah, F., Usman, M., Elfaki, W., & Elfaki, F. A. M (2015). Time series modelling and forecasting of the consumer price Bandar Lampung. Science International (Lahore), 27(5), 4119–4624.
Kiriakidis, M., & Kargas, A. (2013). Greek GDP forecast estimates. Applied Economics Letters, 20(8), 767–772. DOI: https://doi.org/10.1080/13504851.2012.744128
Maccarrone, G., Morelli, G., & Spadaccini, S. (2021). GDP forecasting: machine learning, linear or autoregression? Frontiers in Artificial Intelligence, 4, 757–864. https://doi.org/10.3389/frai.2021.757864 DOI: https://doi.org/10.3389/frai.2021.757864
Medeiros, V., Ribeiro, R. S. M., & Amaral, P. V. M. (2019). Infrastructure and income inequality: an application to the Brazilian case using hierarchical spatial autoregressive models. Cambridge Centre for Economic and Public Policy, University of Cambridge. https://www.landecon.cam.ac.uk/sites/default/files/2023-03/cceppwp0319_1.pdf
Oral, I. O. (2019). Comparison of the winters’ seasonality exponential smoothing method with the Pegels’ classification: forecasting of Turkey’s economic growth rates. Anadolu University Journal of Social Sciences, 19, 275–294. DOI: https://doi.org/10.18037/ausbd.632023
Plakandaras, V., Gupta, R., Gogas, P., & Papadimitriou, T. (2015). Forecasting the U.S. real house price index. Economic Modelling, 45, 259–267. DOI: https://doi.org/10.1016/j.econmod.2014.10.050
Samimi, A., Shirazi, B., & Fazlollahtabar, H. (2005). A comparison between time series, exponential smoothing, and neural network methods to forecast GDP of Iran. Iranian Economic Review, 12, 19–35.
Shams, M. Y., Elshewey, A. M., El-Kenawy, E. S. M., Ibrahim, A. H., Talaat, F. M., & Tarek, Z. (2024). Water quality prediction using machine learning models based on grid search method. Multimedia Tools Applications., 83, 35307–35334. https://doi.org/10.1007/s11042-023-16737-4 DOI: https://doi.org/10.1007/s11042-023-16737-4
Srinivasan, N., Krishna, M., Naveen, V., Kishore, S. M., & Kumar, S. (2023). Predicting Indian GDP with machine learning: a comparison of regression models. In: 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India (pp.1855–1858). http://doi.10.1109/ICACCS57279.2023.10113035 DOI: https://doi.org/10.1109/ICACCS57279.2023.10113035
Uddin, S., & Tanzim, N. (2021). Forecasting GDP of Bangladesh using ARIMA Model. International Journal of Business and Management, 16(6), 56–65. https://doi.org/10.5539/ijbm.v16n6p56 DOI: https://doi.org/10.5539/ijbm.v16n6p56
Uwimana, A., Xiuchun, B., & Shuguang, Z. (2018). Modeling and forecasting Africa’s GDP with time series models. International Journal of Scientific and Research Publications, 8(4), 41–46. DOI: https://doi.org/10.29322/IJSRP.8.4.2018.p7608
Wabomba, M. S., Mutwiri, M. P., & Fredrick, M. (2016) Modelling and forecasting Kenyan GDP using Autoregressive Integrated Moving Average (ARIMA) Models. Science Journal of Applied Mathematics and Statistics, 4, 64–73. DOI: https://doi.org/10.11648/j.sjams.20160402.18
Yang, B., Li, C. G., Li, M., Pan, K., & Wang, D. (2016) Application of ARIMA Model in the Prediction of the gross domestic product. Advances in Intelligent Systems Research, 130, 1258–1262. https://doi.org/10.2991/mcei-16.2016.257 DOI: https://doi.org/10.2991/mcei-16.2016.257
Zhang, Z., Xu, Z., & Cheng, G. (2003). The updated development and application of Contingent Valuation Method (CVM). Advances in Earth Science, 18(3), 454. http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2003.03.0454
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nadia Mushtaq , Shakila Bashir, Amjad Mahmood, Farhad Hussain

This work is licensed under a Creative Commons Attribution 4.0 International License.
Please click here for details about the Licensing and Copyright policies of NASIJ.