Remote sensing analysis of unnamed crater in Eastern Australia

Authors

  • Zahid U. Rahman Department of Computer Science, Comsats University, Islamabad, Pakistan.

DOI:

https://doi.org/10.47264/idea.nasij/2.1.1

Keywords:

Australia, Winton, impact crater, geology, geophysics, remote sensing, bouguer

Abstract

Remote sensing (RS) can certainly provide deep insights about detecting the terrestrial structure of unknown origin. In this paper, we also detected impact crater of unknown origin in northeast Australia by RS techniques, specifically to enhance the credibility of scientific database on the possible impact craters in the continent of Australia. Following the RS procedures, a circular-shaped unnamed crater, hereafter the Winton crater, was detected with a diameter of approximately 130-km. Furthermore, the topographical parameter was obtained from RS data, which showed that the area, depth and volume of the crater are ~100-m2, ~130-m and ~99.8-m3, respectively. The geological data revealed that inside the crater, the outcrops are mainly consisted of sedimentary and low grade metamorphic rock, specifically included the mixed sediments and conglomerates, limestone and siltstone of the Craterous period. However, the exterior of the circular shaped in the southern part is consisted of unconsolidated deposits of the Tertiary period. The positive value of gravity anomaly for the major part of the crater is 3000 mGal and Bouguer gravity onshore grid has an anomaly of 900 mGal over the impact crater. It showed that the Winton crater could not be the due to any volcanic or karstic processes. On the other hand, a detailed field and petrology investigation should need to distinguish the origin of the crater of old and fossil travertine or an impact crater.

Metrics

Metrics Loading ...

References

Atlas of living Australia. (n.d). Spatial Layers. http://spatial.ala.org.au/layers

Blair R.W. Jr. (1986) Karst landforms and lakes. In N. M. Short Sr. & R. W. Blair Jr. (Eds.), Geomorphology from space: A global overview of regional landforms (pp. 402–446). Washington DC: NASA Special Publication (SP–486)

Buchner, E., & Kenkmann, T. (2008). Upheaval Dome, Utah, USA: Impact origin confirmed. Geology, 36(3), 227-230. https://doi.org/10.1130/G24287A.1 DOI: https://doi.org/10.1130/G24287A.1

Earth Explorer. (nd). USGS. https://earthexplorer.usgs.gov/

Folco, L., Di Martino, M., El Barkooky, A., D'Orazio, M., Lethy, A., Urbini, S., ... & El Sharkawi, M. (2010). The kamil crater in Egypt. Science, 329(5993), 804-804. https://science.sciencemag.org/content/329/5993/804.abstract DOI: https://doi.org/10.1126/science.1190990

Folco, L., Di Martino, M., El Barkooky, A., D'Orazio, M., Lethy, A., Urbini, S., ... & El Sharkawi, M. (2011). Kamil Crater (Egypt): Ground truth for small-scale meteorite impacts on Earth. Geology, 39(2), 179-182. https://doi.org/10.1130/G31624.1 DOI: https://doi.org/10.1130/G31624.1

French, B. M. (1998). Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Lunar and Planetary Institute.

French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth-Science Reviews, 98(1-2), 123-170. https://doi.org/10.1016/j.earscirev.2009.10.009 DOI: https://doi.org/10.1016/j.earscirev.2009.10.009

Gad, S., & Kusky, T. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences, 44(2), 196-202. https://doi.org/10.1016/j.jafrearsci.2005.10.014 DOI: https://doi.org/10.1016/j.jafrearsci.2005.10.014

Garvin, J. B., Schnetzler, C. C., & Grieve, R. A. (1992). Characteristics of large terrestrial impact structures as revealed by remote sensing studies. Tectonophysics, 216(1-2), 45-62. https://doi.org/10.1016/0040-1951(92)90155-Y DOI: https://doi.org/10.1016/0040-1951(92)90155-Y

Glikson, A., Korsch, R. J., & Milligan, P. (2016). The Diamantina river ring feature, Winton region, Western Queensland. Australian Journal of Earth Sciences, 63(5), 653-663. https://doi.org/10.1080/08120099.2016.1220978 DOI: https://doi.org/10.1080/08120099.2016.1220978

Grieve, R. A. (2005). Economic natural resource deposits at terrestrial impact structures. Geological Society, London, Special Publications, 248(1), 1-29. https://doi.org/10.1144/GSL.SP.2005.248.01.01 DOI: https://doi.org/10.1144/GSL.SP.2005.248.01.01

Heinrichs, T., Salameh, E., & Khouri, H. (2014). The Waqf as Suwwan crater, Eastern Desert of Jordan: Aspects of the deep structure of an oblique impact from reflection seismic and gravity data. International Journal of Earth Sciences, 103(1), 233-252. https://link.springer.com/article/10.1007/s00531-013-0930-4 DOI: https://doi.org/10.1007/s00531-013-0930-4

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276 DOI: https://doi.org/10.1002/joc.1276

Koeberl, C. (2004). Remote sensing studies of impact craters: How to be sure? Comptes Rendus Geoscience, 336(11), 959-961. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.4948&rep=rep1&type=pdf DOI: https://doi.org/10.1016/j.crte.2004.05.001

Koeberl, C., Reimold, W. U. (2005). Bosumtwi impact crater, Ghana (West Africa): An updated and revised geological map, with explanations. Jahrbuch der Geologischen Bundesanstalt.

Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289. https://doi.org/10.1130/GES00630.1 DOI: https://doi.org/10.1130/GES00630.1

Daneshvar, M. R. M., & Bagherzadeh, A. (2013). Geomorphological investigation of possible impact evidences for the crater-shaped structure of Zirouki in Samsour Desert, SE Iran. Earth Science Informatics, 6(4), 241-252. https://link.springer.com/article/10.1007%2Fs12145-013-0125-3 DOI: https://doi.org/10.1007/s12145-013-0125-3

Paillou, P., Rosenqvist, A., Malezieux, J. M., Reynard, B., Farr, T., & Heggy, E. (2003). Discovery of a double impact crater in Libya: The astrobleme of Arkenu. Comptes Rendus Geoscience, 335(15), 1059-1069. https://doi.org/10.1016/j.crte.2003.09.008 DOI: https://doi.org/10.1016/j.crte.2003.09.008

Paillou, P., El Barkooky, A., Barakat, A., Malezieux, J. M., Reynard, B., Dejax, J., & Heggy, E. (2004). Discovery of the largest impact crater field on Earth in the Gilf Kebir region, Egypt. Comptes Rendus Geoscience, 336(16), 1491-1500. https://doi.org/10.1016/j.crte.2004.09.010 DOI: https://doi.org/10.1016/j.crte.2004.09.010

Passchier, C. W., & Williams, P. R. (1989). Proterozoic extensional deformation in the Mount Isa inlier, Queensland, Australia. Geological Magazine, 126(1), 43-53. https://doi.org/10.1017/S0016756800006130 DOI: https://doi.org/10.1017/S0016756800006130

Pati, J. K., & Reimold, W. U. (2007). Impact cratering—Fundamental process in geoscience and planetary science. Journal of Earth System Science, 116(2), 81-98. https://link.springer.com/article/10.1007%2Fs12040-007-0009-3 DOI: https://doi.org/10.1007/s12040-007-0009-3

Pati, J. K., Prakash, K., & Kundu, R. (2009). Terrestrial impact structures and their confirmation: Example from Dhala structure, central India. Earth Science India, 2(3), 289-298. http://www.earthscienceindia.info/pdfupload/tech_pdf-45.pdf

Raymond, O. L., & Retter, A. J. (2010). Surface geology of Australia 1:1,000,000 scale, 2010 edition [Digital Dataset]. Geoscience Australia. https://researchdata.edu.au/surface-geology-australia-2010-edition/340646

Reimold, W. U., Trepmann, C., Simonson, B., Sisodia, M. S., Lashkari, G., & Bhandari, N. (2006). Impact origin of the Ramgarh structure, Rajasthan: Some new evidences. Journal of Geological Society of India (Online archive from Vol 1 to Vol 78), 68 (Special Issue 3), 561-565. http://ischolar.info/index.php/JGSI/article/viewFile/83655/73708

Schmieder, M., Seyfried, H., & Gerel, O. (2013). The circular Uneged Uul structure (East Gobi Basin, Mongolia)–Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target? Journal of Asian Earth Sciences, 64(5), 58-76. https://doi.org/10.1016/j.jseaes.2012.11.042 DOI: https://doi.org/10.1016/j.jseaes.2012.11.042

Tucker, R. T. (2014). Stratigraphy, sedimentation and age of the upper cretaceous Winton formation, central-western Queensland, Australia: implications for regional palaeogeography, palaeoenvironments and Gondwanan palaeontology. Doctoral dissertation, James Cook University. https://researchonline.jcu.edu.au/34439/

Wang, J., Cheng, W., Luo, W., Zheng, X., & Zhou, C. (2017). An iterative black top hat transform algorithm for the volume estimation of lunar impact craters. Remote Sensing, 9(9), 952. https://doi.org/10.3390/rs9090952 DOI: https://doi.org/10.3390/rs9090952

Wikipedia. (n.d). List of impact craters on earth. https://en.wikipedia.org/wiki/List_of_impact_craters_on_Earth

Wikiwand. (n.d). http://www.wikiwand.com/en/

Wright, S. P., Tornabene, L. L., Ramsey, M. S., Osinski, G. R., & Pierazzo, E. (2013). Remote sensing of impact craters. In Impact cratering: Processes and products (pp. 194-210). Wiley-Blackwell. DOI: https://doi.org/10.1002/9781118447307.ch13

Published

2021-08-03

How to Cite

Rahman, Z. U. (2021). Remote sensing analysis of unnamed crater in Eastern Australia. Natural and Applied Sciences International Journal (NASIJ), 2(1), 1–11. https://doi.org/10.47264/idea.nasij/2.1.1

Issue

Section

Research Articles