Antimicrobial activity of Parrotiopsis jacquemontiana and Caesalpinia decapetala plant extracts against selected pathogens

Authors

DOI:

https://doi.org/10.47264/idea.nasij/4.2.5

Keywords:

Caesalpinia decapetala, Parrotiopsis jacquemontiana, Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Methanolic extracts, Aqueous extracts

Abstract

Antimicrobial-resistant bacteria are a global health concern. Some gram-negative bacteria have acquired resistance to many notorious diseases induced by various pathogens. Therefore, new antibacterial agents are needed to combat these infections. We utilised the agar well diffusion method to find the antibacterial capabilities of Caesalpinia decapetala and Parrotiopsis jacquemontiana aqueous and methanolic extracts. We aimed to find the efficacy of these extracts and their various components against selected pathogens. Methanolic extract showed significantly higher antimicrobial activity against all tested pathogens compared to aqueous extracts, such as 20 mg/mL of MRE-CD, which showed 12.16 ± 1.04 mm inhibitions against P. aeruginosa. In contrast, 10.5± 0.5 mm against S. dysenteriae inhibition compared to 20 mg/mL of MRE-PJ showed 10.16±0.76 mm inhibition against E. coli. Meanwhile, only aqueous root extracts of P. jacquemontiana at 10 mg/mL showed the least 1.5 ± 1.32 against S. dysenteriae mm inhibitions, while E. coli appears to be the less sensitive strain at 10 mg/mL of methanolic stem extract of P. jacquemontiana compared to the aqueous extract of C. decapetala stems, significantly affecting the growth of gram-negative bacterial strains. Therefore, these plant extracts have great natural antimicrobials, and further evaluation would be necessary to use them.

References

Abushaheen, M. A., Muzaheed, Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., Rathod, S., Divakar, D. D., Jhugroo, C., Vellappally, S., Khan, A. A., Shaik, J., & Jhugroo, P. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66(6), 100971. https://doi.org/10.1016/j.disamonth.2020.100971 DOI: https://doi.org/10.1016/j.disamonth.2020.100971

Al-Bayati, F. A. (2008). Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. Journal of Ethnopharmacology, 116(3), 403–406. https://doi.org/10.1016/j.jep.2007.12.003 DOI: https://doi.org/10.1016/j.jep.2007.12.003

Ali, M., Wahab, M., Ahmad, L., Ahmad, I., Semotiuk, A. J., & Jan, H. A. (2022). Ethnopharmacological evaluation of medicinal plants used to treat diabetes mellitus in Maidan valley, Dir Lower, Pakistan. Natural and Applied Sciences International Journal (NASIJ), 3(1), 45–60. https://doi.org/10.47264/idea.nasij/3.1.4 DOI: https://doi.org/10.47264/idea.nasij/3.1.4

Ali, S., Khan, M. R., Iqbal, J., Batool, R., Naz, I., Yaseen, T., Abbasi, B. A., Nasir, J. A., & El-Serehy, H. A. (2021). Chemical composition and pharmacological bio-efficacy of Parrotiopsis jacquemontiana (Decne) Rehder for anticancer activity. Saudi Journal of Biological Sciences, 28(9), 4969–4986. https://doi.org/10.1016/j.sjbs.2021.07.072 DOI: https://doi.org/10.1016/j.sjbs.2021.07.072

Ali, S., Khan, M. R., Irfanullah, Sajid, M., & Zahra, Z. (2018). Phytochemical investigation and antimicrobial appraisal of Parrotiopsis jacquemontiana (Decne) Rehder. BMC Complementary and Alternative Medicine, 18(1), 1-15. https://doi.org/10.1186/s12906-018-2114-z DOI: https://doi.org/10.1186/s12906-018-2114-z

Ali, S., Khan, M. R., & Sajid, M. (2017). Protective potential of Parrotiopsis jacquemontiana (Decne) Rehder on carbon tetrachloride induced hepatotoxicity in experimental rats. Biomedicine & Pharmacotherapy, 95, 1853–1867. https://doi.org/10.1016/j.biopha.2017.09.003 DOI: https://doi.org/10.1016/j.biopha.2017.09.003

Bennett, J. V., Brodie, J. L., Benner, E. J., & Kirby, W. M. M. (1966). Simplified, accurate method for antibiotic assay of clinical specimens. Applied Microbiology, 14(2), 170–177. https://doi.org/10.1128/am.14.2.170-177.1966 DOI: https://doi.org/10.1128/am.14.2.170-177.1966

Bhadoriya, U., Sharma, P., & Solanki, S. S. (2012). In Vitro free radical scavenging activity of gallic acid isolated from Caesalpinia Decapetala wood. Asian Pacific Journal of Tropical Disease, 2, S833–S836. https://doi.org/10.1016/s2222-1808(12)60274-6 DOI: https://doi.org/10.1016/S2222-1808(12)60274-6

Deba, F., Xuan, T. D., Yasuda, M., & Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control, 19(4), 346–352. https://doi.org/10.1016/j.foodcont.2007.04.011 DOI: https://doi.org/10.1016/j.foodcont.2007.04.011

Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843–847. https://doi.org/10.1038/35081178 DOI: https://doi.org/10.1038/35081178

Donia, M., & Hamann, M. T. (2003). Marine natural products and their potential applications as anti-infective agents. The Lancet Infectious Diseases, 3(6), 338–348. https://doi.org/10.1016/s1473-3099(03)00655-8 DOI: https://doi.org/10.1016/S1473-3099(03)00655-8

Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A., & Ozkan, H. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chemistry, 103(4), 1449–1456. https://doi.org/10.1016/j.foodchem.2006.10.061 DOI: https://doi.org/10.1016/j.foodchem.2006.10.061

Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275. https://doi.org/10.1016/j.jaim.2017.05.004 DOI: https://doi.org/10.1016/j.jaim.2017.05.004

Hsouna, A. B., Trigui, M., Mansour, R. B., Jarraya, R. M., Damak, M., & Jaoua, S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International Journal of Food Microbiology, 148(1), 66–72. https://doi.org/10.1016/j.ijfoodmicro.2011.04.028 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.04.028

Jan, S., Hamayun, M., Ahmad, N., Nawaz, Y., Khan, A. L., Iqbal, A., & Lee, I. J. (2012). Antibacterial potential of plants traditionally used for curing diarrhea in Khyber Pakhtunkhwa, Pakistan. J Med Plants Res, 6(23), 4039-4047.

Karaman, ?., ?ahin, F., Güllüce, M., Ö?ütçü, H., ?engül, M., & Ad?güzel, A. (2003). Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. Journal of Ethnopharmacology, 85(2–3), 231–235. https://doi.org/10.1016/s0378-8741(03)00006-0 DOI: https://doi.org/10.1016/S0378-8741(03)00006-0

Khaled-Khodja, N., Boulekbache-Makhlouf, L., & Madani, K. (2014). Phytochemical screening of antioxidant and antibacterial activities of methanolic extracts of some Lamiaceae. Industrial Crops and Products, 61, 41–48. https://doi.org/10.1016/j.indcrop.2014.06.037 DOI: https://doi.org/10.1016/j.indcrop.2014.06.037

Kumar, A., Yadav, R. K., Kumar Shrivastava, N., Kumar, R., Kumar, D., Singh, J., Yadav, S., Ansari, M. N., Saeedan, A. S., & Kaithwas, G. (2023). Optimization of novel method for isolation of high purity food grade ?-linolenic acid from Linum usitatissimum seeds. LWT, 189, 115466. https://doi.org/10.1016/j.lwt.2023.115466 DOI: https://doi.org/10.1016/j.lwt.2023.115466

Levy, S. B. (1998). The challenge of antibiotic resistance. Scientific American, 278(3), 46–53. https://doi.org/10.1038/scientificamerican0398-46 DOI: https://doi.org/10.1038/scientificamerican0398-46

Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(S12), S122–S129. https://doi.org/10.1038/nm1145 DOI: https://doi.org/10.1038/nm1145

Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. Journal of Clinical Investigation, 111(9), 1265–1273. https://doi.org/10.1172/jci18535 DOI: https://doi.org/10.1172/JCI18535

MadhumitaGhosh, Nallal, V. U., Prabha, K., Muthupandi, S., & Razia, M. (2022). Synergistic antibacterial potential of plant-based Zinc oxide Nanoparticles in combination with antibiotics against Pseudomonas aeruginosa. Materialstoday: Proceedings, 49(Part 7), 2632–2635. https://doi.org/10.1016/j.matpr.2021.08.046 DOI: https://doi.org/10.1016/j.matpr.2021.08.046

Mahboubi, A., Asgarpanah, J., Sadaghiyani, P. N., & Faizi, M. (2015). Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. var. pleniflora flowers (Golnar) against bacterial strains causing foodborne diseases. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/s12906-015-0887-x DOI: https://doi.org/10.1186/s12906-015-0887-x

Majheni?, L., Škerget, M., & Knez, Ž. (2007). Antioxidant and antimicrobial activity of guarana seed extracts. Food Chemistry, 104(3), 1258–1268. https://doi.org/10.1016/j.foodchem.2007.01.074 DOI: https://doi.org/10.1016/j.foodchem.2007.01.074

Masola, S. N., Mosha, R. D., & Wambura, P. N. (2009). Assessment of antimicrobial activity of crude extracts of stem and root barks from Adansonia digitata (Bombacaceae) (African baobab). African Journal of Biotechnology, 8(19), 5076–5083. https://www.ajol.info/index.php/ajb/article/view/65227

Matu, E. N., & van Staden, J. (2003). Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. Journal of Ethnopharmacology, 87(1), 35–41. https://doi.org/10.1016/s0378-8741(03)00107-7 DOI: https://doi.org/10.1016/S0378-8741(03)00107-7

Mbatchou, V. C., Ayebila, A. J., & Apea, O. B. (2011). Salmonella typhi. Journal of Animal & Plant Sciences, 10(1), 1248–1258. https://www.m.elewa.org/JAPS/2011/10.1/1.pdf

Nayeem, N., & SMB, A. (2016). Gallic acid: A promising lead molecule for drug development. Journal of Applied Pharmacy, 08(02). https://doi.org/10.4172/1920-4159.1000213 DOI: https://doi.org/10.4172/1920-4159.1000213

O’Loughlin, E. V., & Robins-Browne, R. M. (2001). Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes and Infection, 3(6), 493–507. https://doi.org/10.1016/s1286-4579(01)01405-8 DOI: https://doi.org/10.1016/S1286-4579(01)01405-8

Parveen, Z., Nawaz, S., Siddique, S., & Shahzad, K. (2013) Composition and Antimicrobial Activity of the Essential Oil from Leaves of Curcuma longa L. Kasur Variety. Indian Journal of Pharmaceutical Sciences, 75(1), 117-122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719142/ DOI: https://doi.org/10.4103/0250-474X.113544

Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12 DOI: https://doi.org/10.1586/eri.13.12

Qiao, Y., Xu, Q., Hu, Z., Li, X.-N., Xiang, M., Liu, J., Huang, J., Zhu, H., Wang, J., Luo, Z., Xue, Y., & Zhang, Y. (2016). Diterpenoids of the Cassane Type from Caesalpinia Decapetala. Journal of Natural Products, 79(12), 3134–3142. https://doi.org/10.1021/acs.jnatprod.6b00910 DOI: https://doi.org/10.1021/acs.jnatprod.6b00910

Russo, T. A., & Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes and Infection, 5(5), 449–456. https://doi.org/10.1016/s1286-4579(03)00049-2 DOI: https://doi.org/10.1016/S1286-4579(03)00049-2

Shikov, A. N., Narkevich, I. A., Flisyuk, E. V., Luzhanin, V. G., & Pozharitskaya, O. N. (2021). Medicinal plants from the 14th edition of the Russian Pharmacopoeia, recent updates. Journal of Ethnopharmacology, 268, 113685. https://doi.org/10.1016/j.jep.2020.113685 DOI: https://doi.org/10.1016/j.jep.2020.113685

Shrivastava, S., Shrivastava, P., & Ramasamy, J. (2018). World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Journal of Medical Society, 32(1), 76. https://doi.org/10.4103/jms.jms_25_17 DOI: https://doi.org/10.4103/jms.jms_25_17

Sosa-Moreno, A., Comstock, S. S., Sugino, K. Y., Ma, T. F., Paneth, N., Davis, Y., Olivero, R., Schein, R., Maurer, J., & Zhang, L. (2020). Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. PLOS ONE, 15(6), e0234751. https://doi.org/10.1371/journal.pone.0234751 DOI: https://doi.org/10.1371/journal.pone.0234751

Varghese, M., & Balachandran, M. (2021). Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review. Journal of Environmental Chemical Engineering, 9(6), 106821. https://doi.org/10.1016/j.jece.2021.106821 DOI: https://doi.org/10.1016/j.jece.2021.106821

Wei, X.-H., Yang, S.-J., Liang, N., Hu, D.-Y., Jin, L.-H., Xue, W., & Yang, S. (2013). Chemical Constituents of Caesalpinia Decapetala (Roth) Alston. Molecules, 18(1), 1325–1336. https://doi.org/10.3390/molecules18011325 DOI: https://doi.org/10.3390/molecules18011325

Published

2023-12-31

How to Cite

Ullah, A., Siraj, U., Muhammad, A., Junaid, M., Arif, H., Batool, S., … Ullah, S. (2023). Antimicrobial activity of Parrotiopsis jacquemontiana and Caesalpinia decapetala plant extracts against selected pathogens. Natural and Applied Sciences International Journal (NASIJ), 4(2), 78–93. https://doi.org/10.47264/idea.nasij/4.2.5

Issue

Section

Original Research Articles