The biosynthesis of ZnO nanoparticles using Synadenium grantii latex: characterisation and evaluation of their antimicrobial activities

Authors

  • Daniel Tirop Department of Chemistry and Biochemistry, University of Eldoret, Eldoret, Kenya. https://orcid.org/0009-0003-1393-2069
  • Lemeitaron Njenga Department of Chemistry and Biochemistry, University of Eldoret, Eldoret, Kenya. https://orcid.org/0009-0007-9476-4464
  • Ayabei Kiplagat Department of Chemistry and Biochemistry, University of Eldoret, Eldoret, Kenya. https://orcid.org/0000-0002-5930-3407
  • Grace Lagat Department of Chemistry and Biochemistry, University of Eldoret, Eldoret, Kenya.
  • Martin Onani Department of Chemistry, DST/Mintek Nanotechnology Innovation Centre, University of the Western Cape, Bellville, South Africa. https://orcid.org/0000-0002-4735-3669

DOI:

https://doi.org/10.47264/idea.nasij/5.2.4

Keywords:

Biosynthesis, Zinc Oxide Nanoparticles, Latex, Anti-bacterial activity, Fourier transform, Synadenium grantii, Staphylococcus aureus

Abstract

The steadily rising incidences of microbial and infectious diseases pose a direct threat to both human and animal sustainability. Over the previous 20 years, the expectations for eco-friendly nanoparticles application as contemporary medicinal agents have grown. This is why, as opposed to using hazardous chemicals, researchers have recently concentrated on simple, green, sustainable, and affordable ways to create nanoparticles. This research aimed to use the latex of Synadenium grantii to synthesize ZnO NPs (zinc oxide nanoparticles) using a simple and environmentally friendly technique. The observation of the maximum wavelength at 365 nm using Ultraviolet-visible (UV-Vis) spectrometry signified the formation of zinc oxide nanoparticles. The FT-IR (Fourier transform-infrared) spectrometry indicated the bands of various biomolecules (mainly polyphenols at 1541 cm-1 wavenumber) involved in reducing and capping zinc oxide nanoparticles. The XRD spectrum demonstrated the wurtzite phases of ZnO nanoparticles of 24 nm in size. The synthesized ZnO NPs demonstrated great anti-microbial potency compared to the positive control (ampicillin) as tested on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The study confirmed the presence of various chemical compounds in latex of Synadenium grantii responsible for the synthesis of ZnO NPs with enhanced anti-bacterial effects in comparison to the latex extract.

References

Abbas, N. K., Al-ogaidi, I., Mahmood, S. S., & Obied, H. N. (2019). Investigation of antibacterial activity and cytotoxicity of ZnO nanoparticles synthesized by a novel biological method. ARPN Journal of Engineering and Applied Sciences, 14(6), 9491–9503.

Abdelbaky, A. S., El-mageed, T. A. A., Babalghith, A. O., Selim, S., & Mohamed, A. M. H. A. (2022). Green synthesis and characterization of Zno nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants, 11(8), 1444. https://doi.org/10.3390/antiox11081444

Ali, M., Wahab, M., Ahmad, L., Ahmad, I., Semotiuk, A. J., & Jan, H. A. (2022). Ethnopharmacological evaluation of medicinal plants used to treat diabetes mellitus in Maidan valley, Dir Lower, Pakistan. Natural and Applied Sciences International Journal (NASIJ), 3(1), 45–60. https://doi.org/10.47264/idea.nasij/3.1.4

Akhtar, M. S., Panwar, J., & Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry and Engineering, 1(6), 591–602. https://doi.org/10.1021/sc300118u

Aklilu, M. (2022). Khat (catha edulis) leaf extract-based zinc oxide nanoparticles and evaluation of their antibacterial activity. Journal of Nanomaterals, 2022, 4048120. https://doi.org/10.1155/2022/4048120

Alharthi, M. N., Ismail, I., Bellucci, S., Khdary, N. H., & Abdel Salam, M. (2021). Biosynthesis microwave-assisted of zinc oxide nanoparticles with ziziphus jujuba leaves extract: Characterization and photocatalytic application. Nanomaterials, 11(7), 1682. https://doi.org/10.3390/nano11071682

Chandrasekaran, A., Manjula, D. R., Suresh, P., Balasubramanian, N., Muthaiya, N., Kannan, N. D . & Mayandi, J. (2020). Antibacterial and anticancer activity of hydrothermally-synthesized zinc oxide nanomaterials using natural extracts of neem, pepper and turmeric as solvent media. Nano Express, 1(1), 010029. https://doi.org/10.1088/2632-959x/ab8a76

Dibaba, S. T. (2023). Green Synthesis Method of Zno nanoparticles using extracts of zingiber of fi cinale and Garlic Bulb (Allium sativum ) and their synergetic effect for antibacterial activities. Journal of Nanomaterials, 2023(1), 7036247. https://doi.org/10.1155/2023/7036247

Dulta, K., Kosarsoy-agceli, G., & Jasrotia, R. (2022). Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications ecofriendly synthesis of Zinc Oxide Nanoparticles by Carica papaya leaf extract and their applications. Journal of Cluster Science, 33, 603–617. https://doi.org/10.1007/s10876-020-01962-w

Ebadi, M., Zolfaghari, M. R., Aghaei, S. S., Zargar, M., Shafiei, M., Zahiri, H. S., & Noghabi, K. A. (2019). A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium: Nostoc sp. EA03: from biological function to toxicity evaluation. RSC Advances, 9(41), 23508–23525. https://doi.org/10.1039/c9ra03962g

Gilavand, F., Branch, K., Mirzaei, S. Z., Biology, M., Karkhane, M., & Marzban, A. (2021). Green synthesis of zinc nanoparticles using aqueous extract of magnoliae green synthesis of zinc nanoparticles using aqueous extract of magnoliae officinalis and assessment of its bioactivity potentials. Biointerferance Research in Applied Chemistry, 11(1), 7765–7774. https://doi.org/10.33263/BRIAC111.77657774

Gupta, M., Tomar, R. S., Kaushik, S., & Mishra, R. K. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 1–13. https://doi.org/10.3389/fmicb.2018.02030

Hajizadeh, Y. S., Babapour, E., Harzandi, N., Yazdanian, M., & Ranjbar, R. (2023). The effect of cytotoxicity and antimicrobial of synthesized CuO NPs from Propolis on HEK-293 Cells and Lactobacillus acidophilus. Evidence-Based Complementary and Alternative Medicine, 2023(1), 1430839. https://doi.org/10.1155/2023/1430839

Hameed, S., Iqbal, J., Ali, M., Khalil, A. T., Abbasi, B. A., Numan, M., & Shinwari, Z. K. (2019). Green synthesis of zinc nanoparticles through plant extracts: establishing a novel era in cancer theranostics. Materials Research Express, 6(10). https://doi.org/10.1088/2053-1591/ab40df

Hussain, A., Oves, M., Alajmi, M. F., Hussain, I., Amir, S., Ahmed, J., Rehman, M. T., El-Seedi, H. R., & Ali, I. (2019). Biogenesis of ZnO nanoparticles using: Pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Advances, 9(27), 15357–15369. https://doi.org/10.1039/c9ra01659g

Ikhioya, I. L., Nkele, C. A., & Obitte, B. (2023). The green synthesis of copper oxide nanoparticles using the Moringa oleifera plant and its subsequent characterization for use in energy storage applications. East European Journal of Physics, 1, 162–172. https://doi.org/10.26565/2312-4334-2023-1-20

Jeyabharathi, S., Naveenkumar, S., & Chandramohan, S. (2022). Biological synthesis of zinc oxide nanoparticles from the plant extract, Wattakaka volubilis showed anti-microbial and antihyperglycemic effects. Journal of King Saud University - Science, 34(3), 101881. https://doi.org/10.1016/j.jksus.2022.101881

Khan, A. U., Ilyas, M., Zamel, D., & Khan, S., Ahmed, A., Kaneez, F., …, & Khan, S. U. (2022). Bio-inspired fabrication of zinc oxide nanoparticles?: insight into biomedical applications. Annuals of Advances in Chemistry, 6, 23–37. https://doi.org/10.29328/journal.aac.1001028

Kiani, B. H., Ikram, F., Fatima, H., & Alhodaib, A. (2022). Comparative evaluation of biomedical and phytochemical applications of zinc nanoparticles by using Fagonia cretica extracts. Scientific Reports, 12, 10024. https://doi.org/10.1038/s41598-022-14193-y

Li, T. (2023). Facile preparation of zinc nanoparticles mediated by plant aqueous extract and assessment of the antioxidant, cytotoxicity and anti-human bone carcinoma properties. Micro & Nano Letters, 18(3), 1–8. https://doi.org/10.1049/mna2.12156

Lopez-miranda, J. L., Molina, G. A., Alexis, M., Liliana, B., Esparza, R., Silva, R., & Est, M. (2023). Antibacterial and anti-inflammatory properties of zno nanoparticles synthesized by a green method using Sargassum extracts. Int. J. Mol. Sci. 2023, 24(2), 1474. https://doi.org/10.3390/ijms24021474

Luz, L. E. C., Paludo, K. S., Santos, V. L. P., Franco, C. R. C., Klein, T., Silva, R. Z., Beltrame, F. L., & Budel, J. M. (2015). Cytotoxicity of latex and pharmacobotanical study of leaves and stem of Euphorbia umbellata (Janaúba). Brazilian Journal of Pharmacognosy, 25(4), 344–352. https://doi.org/10.1016/j.bjp.2015.07.005

Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Advances, 9(51), 29541–29548. https://doi.org/10.1039/c9ra04424h

Muthuvel, A., Jothibas, M., & Manoharan, C. (2020). Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. Journal of Environmental Chemical Engineering, 8(2), 103705. https://doi.org/10.1016/j.jece.2020.103705

Naiel, B., Fawzy, M., Halmy, M. W. A., El, A., & Mahmoud, D. (2022). Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports, 12, 20370. https://doi.org/10.1038/s41598-022-24805-2

Njenga, L., Ayabei, K., Akenga, T., Onyambu, Z., Kiptoo, J., & Onani, M. (2023). Anti-bacterial activities of green synthesized ZnO and CuO nanoparticles from leaf extracts of Warburgia ugandensis. American Journal of Nano Research and Applications, 11(1), 10–18. https://doi.org/10.11648/j.nano.20231101.12

Omeh, R., Ali, I. J., & Adonu, C. C. (2024). Venonia amygdalina leaf extract - mediated redox synthesis of silver nanoparticles: Characterization and antimicrobial activity. German Journal of Pharmaceuticals and Biomaterials, 2(4), 19–30. https://doi.org/10.5530/gjpb.2023.4.12

Radhakrishnan, R., Liakath, F., Khan, A., & Muthu, A. (2021). Green synthesis of copper oxide nanoparticles mediated by aqueous leaf extracts of Leucas aspera and Morinda tinctoria. Letters in Applied NanoBioscience, 10(4), 2706–2714.

Rahman, F., Patwary, A. M., Siddique, A. B., Bashar, S., Haque, A., & Akter, B. (2022). Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial , antioxidant and photocatalytic activity. The Royal Society Publishing.

Said, G., Wahab, M., & Umair, M. (2022). Optimal conditions for the high yield of bioactive asterric acid from marine derived Fungus Aspergillus sp. Natural and Applied Sciences International Journal (NASIJ), 3(2), 1–14. https://doi.org/10.47264/idea.nasij/3.2.1

Selim, Y. A., Azb, M. A., Ragab, I., & El-azim, M. H. M. A. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Scientific Reports, 10, 3445. https://doi.org/10.1038/s41598-020-60541-1

Somu, P., & Paul, S. (2019). A biomolecule-assisted one-pot synthesis of zinc oxide nanoparticles and its bioconjugate with curcumin for potential multifaceted therapeutic applications. New Journal of Chemistry, 43(30), 11934–11948. https://doi.org/10.1039/c9nj02501d

Turki, K. M., Al-haddad, R. M. S., & Ahmed, A. R. (2023). Effect of reaction time on the blue shift of chemically created silver nanoparticles. Journal for Research in Applied Sciences and Biotechnology, 2(1), 167–173. https://doi.org/10.55544/jrasb.2.1.23

Wang, H. B., Wang, X. Y., Liu, L. P., Qin, G. W., & Kang, T. G. (2015). Tigliane diterpenoids from the euphorbiaceae and thymelaeaceae families. Chemical Reviews 115(9), 2975–3011. https://doi.org/10.1021/cr200397n

Yadav, E., Singh, D., Yadav, P., & Verma, A. (2018). Ameliorative effect of biofabricated ZnO nanoparticles of: trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation. RSC Advances, 8(38), 21621–21635. https://doi.org/10.1039/c8ra03500h

Published

2024-09-30

How to Cite

Tirop, D., Njenga, L., Kiplagat, A., Lagat, G., & Onani, M. (2024). The biosynthesis of ZnO nanoparticles using Synadenium grantii latex: characterisation and evaluation of their antimicrobial activities. Natural and Applied Sciences International Journal (NASIJ), 5(2), 56–67. https://doi.org/10.47264/idea.nasij/5.2.4

Issue

Section

Original Research Articles

Similar Articles

You may also start an advanced similarity search for this article.