Remote sensing evaluation of land surface temperature and urban area expansion in Zhengzhou city during 2013-2015

Authors

  • Sheheryar Khan College of Information Engineering, Henan University of Technology, Zhengzhou, China | Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Zhengzhou, China.
  • Sajid Gul School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China.
  • Weidong Li College of Information Engineering, Henan University of Technology, Zhengzhou, China | Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Zhengzhou, China. https://orcid.org/0000-0001-5618-9154

DOI:

https://doi.org/10.47264/idea.nasij/2.1.4

Keywords:

Landsat 8, remote sensing, surface temperature, land surface temperature, mono-window algorithm, challenges of urbanisation

Abstract

The Urban Heat Island (UHI) concept is one of the most serious ecological and social challenges of the urbanisation. As a result of these events, several man-made urban areas have displaced the rural areas with increased thermal conductivity surfaces, resulting in higher temperatures in the urban areas. Thus, this paper analyses the variations in Land Surface Temperature (LST) and the heat island area using Landsat 8 data and NPP VIIRS night-time light data. The data sources during 2013-2015 of Zhengzhou city, China, are selected to be a case study in this research work. According to the research, the economic centre of Zhengzhou city is shifting eastward, and the mean centre of urban area acquired from NPP VIIRS night-light data is extremely similar to the heat island area derived from Landsat 8 data. Also, the heat island areas obtained from the NPP VIIRS night-light data, and the yearbook data of Zhengzhou Bureau of Statistics are comparable with the accuracies of 96-99%. Hence, our proposed procedure can be implemented practically to point out the urban areas, to identify the UHI areas with high accuracies in other regions and also can be used to indicate how large the UHI effects on the urban area with increased population and industries.

References

Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313-329. https://doi.org/10.1016/0034-4257(82)90043-8

Balaji, T., & Sumathi, D. M. (2014). Effective features of remote sensing image classification using interactive adaptive thresholding method. arXiv preprint arXiv:1401.7743. https://arxiv.org/abs/1401.7743

Balçik, F. B. (2014). Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices. Environmental Monitoring and Assessment, 186(2), 859-872. https://doi.org/10.1007/s10661-013-3427-5

Bhiwapurkar, P. (2007). Urban heat island phenomenon, urban morphology and building energy: The case of Chicago. Ph.D. Thesis, Graduate College of the Illinois Institute of Technology. https://www.proquest.com/docview/304860327

Chen, F., Yang, X., & Zhu, W. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research, 138, 364-377. https://doi.org/10.1016/j.atmosres.2013.12.005

Du, C., Ren, H., Qin, Q., Meng, J., & Zhao, S. (2015). A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sensing, 7(1), 647-665. https://doi.org/10.3390/rs70100647

Giannico, C. (2007). Remote sensing of vegetation in the calabrian region. Acta Astronautica, 60(2), 119-131. https://doi.org/10.1016/j.actaastro.2006.07.003

Guo, Z., Wang, S., Cheng, M., & Shu, Y. (2012). Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images. Procedia Environmental Sciences, 13, 935-942. https://doi.org/10.1016/j.proenv.2012.01.087

Gupta, R., Viswanadham, T., Prasad, S., & Singh, B. (1995). Interrelationships between 0930, 1030, 1330 and 1430 h LANDSAT/TM and IRS/LISS spectral bands NDVI over the wheat growth cycle. Acta Astronautica, 35(7), 471-476. https://doi.org/10.1016/0094-5765(94)00282-Q

Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of environment, 114(3), 504-513. https://doi.org/10.1016/j.rse.2009.10.008

Käfer, P. S., Rolim, S. B., Heinz, L. V., Iglesias, M. L., da Rocha, N. S., & Diaz, L. R. (2020). Assessment of single-channel algorithms for land surface temperature retrieval at two southern Brazil sites. Journal of Applied Remote Sensing, 14(1), 016507.

Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. In Multidisciplinary Digital Publishing Institute Proceedings, 2(7), 358).https://doi.org/10.3390/ecrs-2-05171

Keeratikasikorn, C., & Bonafoni, S. (2018). Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sensing, 10(3), 440. https://doi.org/10.3390/rs10030440

Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2014). Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sensing Letters, 5(2), 165-174. https://doi.org/10.1080/2150704X.2014.890758

Mason, J., Meixner, T., Rumpel, C., Lata, J. C., & Galbraith, J. M. (2021). 24. Urban forestry. Recarbonizing global soils–A technical manual of recommended management practices: Volume 5–Forestry, wetlands, urban soils: Practices overview, 329.

Moran, M. S., Jackson, R. D., Slater, P. N., & Teillet, P. M. (1992). Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41(2-3), 169-184. https://doi.org/10.1016/0034-4257(92)90076-V

Mu, B., Mayer, A. L., He, R., & Tian, G. (2016). Land use dynamics and policy implications in Central China: A case study of Zhengzhou. Cities, 58, 39-49. https://doi.org/10.1016/j.cities.2016.05.012

Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. Journal of Geovisualization and Spatial Analysis, 2(2), 1-19. https://link.springer.com/article/10.1007/s41651-018-0021-y

Sekertekin, A., & Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294

Snyder, W. C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14), 2753-2774. https://doi.org/10.1016/j.rse.2004.02.003

Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440.

Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Frontiers of Architectural Research, 6(4), 529-538. https://doi.org/10.1016/j.foar.2017.08.001

Sturman, A., & Wanner, H. (2001). A Comparative Review of the Weather and Climate of the Southern Alps of New Zealand and the European Alps. Mountain Research and Development, 21(4), 359-369. http://www.jstor.org/stable/3674297

Tsou, J., Zhuang, J., Li, Y., & Zhang, Y. (2017). Urban heat island assessment using the Landsat 8 data: a case study in Shenzhen and Hong Kong. Urban Science, 1(1), 10. https://www.mdpi.com/2413-8851/1/1/10

Ulivieri, C., & Cannizzaro, G. (1985). Land surface temperature retrievals from satellite measurements. Acta Astronautica, 12(12), 977-985. https://doi.org/10.1016/0094-5765(85)90026-8

Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015). An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4), 4268-4289. https://doi.org/10.3390/rs70404268

Wang, W., Liu, K., Tang, R., & Wang, S. (2019). Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Physics and Chemistry of the Earth, Parts A/B/C, 110, 168-175. https://doi.org/10.1016/j.pce.2019.01.002

Watkins, A. H., & Thormodsgard, J. M. (1987). Higher resolution satellite remote sensing and the impact on image mapping. Acta Astronautica, 16, 221-232. https://doi.org/10.1016/0094-5765(87)90109-3

Yang, J., Wang, Y., Xiu, C., Xiao, X., Xia, J., & Jin, C. (2020). Optimizing local climate zones to mitigate urban heat island effect in human settlements. Journal of Cleaner Production, 275, 123767. https://doi.org/10.1016/j.jclepro.2020.123767

Zheng, Q., Weng, Q., & Wang, K. (2019). Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS Journal of Photogrammetry and Remote Sensing, 153, 36-47. https://doi.org/10.1016/j.isprsjprs.2019.04.019

Published

2021-11-26

How to Cite

Khan, S., Gul, S., & Li, W. (2021). Remote sensing evaluation of land surface temperature and urban area expansion in Zhengzhou city during 2013-2015. Natural and Applied Sciences International Journal (NASIJ), 2(1), 39–55. https://doi.org/10.47264/idea.nasij/2.1.4

Issue

Section

Original Research Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.