Investigations of carbon and particulate matter emissions of diesel engine using tertiary fuel

Authors

  • Sajjad Bhangwar Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan. https://orcid.org/0000-0002-8704-9178
  • Zohaib Khan Mechanical Engineering Department, The University of Larkana, Larkana, Sindh, Pakistan | Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia. https://orcid.org/0009-0003-6119-7230
  • Azhar Hussain Shah Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan. https://orcid.org/0009-0006-0398-8183
  • Arif Ali Rind Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan. https://orcid.org/0009-0006-6272-8285
  • Muhammad Siddique Baloch Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan. https://orcid.org/0009-0006-3303-3855
  • Irfan Gul Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan. https://orcid.org/0009-0003-0421-5383
  • Muhammad Nawaz Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan. https://orcid.org/0009-0000-7439-9104

DOI:

https://doi.org/10.47264/idea.nasij/5.1.1

Keywords:

Compression ignition engine, CI engine, Biodiesel, Clove oil, Carbon monoxide, Carbon dioxide, Fossil fuel, Energy crisis, Bioenergy, Renewable bioenergy

Abstract

The development of modern world reveals that the world is facing an energy crisis due to the depletion of fossil fuel reserves. Biodiesel is renewable bioenergy made from vegetable oils, microalgae oil, and animal fats. The study involved adding 3,000 parts per million (ppm) of clove oil as an additive to the biodiesel. An endurance test was then conducted on a Compression Ignition (CI) engine for a duration of 100 hours, using three different fuel samples: pure diesel fuel (D100), a blend of 30% biodiesel and 70% diesel fuel (B30), and a blend of biodiesel with 3,000 ppm of clove oil (3000 ppm). The study analysed the effects of the fuel samples on carbon emissions from a CI engine. The results show that carbon monoxide (1.69%) is reduced in B30 and (7.49%) is reduced in CL3000 ppm. Carbon dioxide (7.97%) in B30 and 12.59% in CL3000 ppm are also reduced. Further particulate diesel engine emissions using biodiesel and clove oil-blend fuel samples were investigated. It was found that PM emissions were reduced when using clove oil-blend fuel.

References

Agrawal, H., Malloy, Q. G., Welch, W. A., Miller, J. W., & Cocker III, D. R. (2008). In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmospheric Environment, 42(21), 5504–5510. https://doi.org/10.1016/j.atmosenv.2008.02.053

Bhangwar, S., Ghoto, S. M., Abbasi, A., Abbasi, M. K., Rind, A. A., Luhur, M. R., ... & Mastoi, S. (2022a). Analysis of particulate matter emissions and performance of the compression ignition engine using biodiesel blended fuel. Engineering, Technology & Applied Science Research, 12(5), 9400–9403. https://doi.org/10.48084/etasr.5204

Bhangwar, S., Liaquat, A. M., Luhar, M. R., Abbasi, A., Kumar, L., Rajput, U. A., & Mastoi, S. (2022b). Production of biodiesel and analysis of exhaust particulate emissions and metal concentration of lubricant oil of the compression ignition engine. Frontiers in Energy Research, 10, 1057611. https://doi.org/10.3389/fenrg.2022.1057611

Bhangwar, S., Memon, L. A., Luhur, M. R., & Rind, A. A. (2024). Experimental investigation of effects of tertiary fuel on carbon deposition and emissions level of compression ignition engine. South African Journal of Chemical Engineering, 47, 291–299. https://doi.org/10.1016/j.sajce.2023.11.012

Bharti, R., & Singh, B. (2020). Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, 262, 116658. https://doi.org/10.1016/j.fuel.2019.116658

Bhutto, A. R., Hussain, T., Kumar, L., Bhangwar, S., & Shah, A. H. (2023). Comparative Investigation of Performance Analysis & Carbon Emission of Biodiesel and Conventional Fuel. Journal of Applied Engineering & Technology (JAET), 7(2), 55–69. https://doi.org/10.55447/jaet.07.02.118

Biernat, K., Ch?opek, Z., & Grzelak, P. L. (2023). Influence of the Use of EtG Synthetic Fuel in Spark-Ignition Engines on Vehicle Fuel Consumption and Pollutant Emissions. Energies, 16(17), 6273. https://doi.org/10.3390/en16176273

De Sousa, L. S., De Moura, C. V. R., De Oliveira, J. E., & De Moura, E. M. (2014). Use of natural antioxidants in soybean biodiesel. Fuel, 134, 420–428. https://doi.org/10.1016/j.fuel.2014.06.007

Dunn, R. O. (2005). Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Processing Technology, 86(10), 1071–1085. https://doi.org/10.1016/j.fuproc.2004.11.003

Ismail, S. A. E. A., & Ali, R. F. M. (2016). Enhancing oxidative stability of biodiesel samples subjected to cations contamination during storage using Lantana camara L. (Verbanaceae) leaves extracts. Biochemical Engineering Journal, 110, 143–151. https://doi.org/10.1016/j.bej.2016.02.009

Jain, S., & Sharma, M. P. (2010). Review of different test methods for the evaluation of stability of biodiesel. Renewable and Sustainable Energy Reviews, 14(7), 1937–1947. https://doi.org/10.1016/j.rser.2010.04.011

Karavalakis, G., Durbin, T. D., Shrivastava, M., Zheng, Z., Villela, M., & Jung, H. (2012). Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles. Fuel, 93, 549-558. https://doi.org/10.1016/j.fuel.2011.09.021

Knoll, K., West, B., Huff, S., Thomas, J., Orban, J., & Cooper, C. (2009). Effects of mid-level ethanol blends on conventional vehicle emissions (No. 2009-01-2723). SAE Technical Paper. https://doi.org/10.4271/2009-01-2723

Kreivaitis, R., Gumbyt?, M., Kazancev, K., Padgurskas, J., & Makarevi?ien?, V. (2013). A comparison of pure and natural antioxidant modified rapeseed oil storage properties. Industrial Crops and Products, 43, 511–516. https://doi.org/10.1016/j.indcrop.2012.07.071

Mahaser, J. A., Bhangwar, S., Khan, M. A., Shah, A. H., Sarwar, A., Luhur, M. R., & Nawaz, M. (2023). Analysis of metal concentration, performance and noise emissions of the CI engine. Natural and Applied Sciences International Journal (NASIJ), 4(2), 94–107. https://doi.org/10.47264/idea.nasij/4.2.6

Martikainen, S., Salo, R., Kuuluvainen, H., Teinilä, K., Hooda, R. K., Datta, A., Sharma, V. P., … & Rönkkö, T. (2023). Reducing particle emissions of heavy-duty diesel vehicles in India: Combined effects of diesel, biodiesel and lubricating oil. Atmospheric Environment: X, 17, 100202. https://doi.org/10.1016/j.aeaoa.2023.100202

Memon, T. A. (2022). Assessment of Rice Residues as Potential Energy Source in Pakistan. Sukkur IBA Journal of Emerging Technologies, 5(1), 41–53. https://doi.org/10.30537/sjet.v5i1.982

Mendiburu, A. Z., Lauermann, C. H., Hayashi, T. C., Mariños, D. J., da Costa, R. B. R., Coronado, C. J., ... & de Carvalho Jr, J. A. (2022). Ethanol as a renewable biofuel: Combustion characteristics and application in engines. Energy, 257, 124688. https://doi.org/10.2166/wst.2023.397

Millo, F., Vlachos, T., & Piano, A. (2021). Physicochemical and mutagenic analysis of particulate matter emissions from an automotive diesel engine fuelled with fossil and biofuel blends. Fuel, 285, 119092. https://doi.org/10.1016/j.fuel.2020.119092

Moser, B. R. (2012). Efficacy of gossypol as an antioxidant additive in biodiesel. Renewable energy, 40(1), 65–70. https://doi.org/10.1016/j.renene.2011.09.022

Ogunsola, A. D., Durowoju, M. O., Ogunkunle, O., Laseinde, O. T., Rahman, S. A., & Fattah, I. M. R. (2023). Shea butter oil biodiesel synthesized using snail shell heterogeneous catalyst: Performance and environmental impact analysis in diesel engine applications. Sustainability, 15(11), 8913. https://doi.org/10.3390/su15118913

Panithasan, M. S., & Venkadesan, G. (2023). Evaluating the outcomes of a single-cylinder CRDI engine operated by lemon peel oil under the influence of DTBP, rice husk nano additive and water injection. International Journal of Engine Research, 24(2), 308–323. https://doi.org/10.1177/14680874211047743

Pardauil, J. J., Souza, L. K., Molfetta, F. A., Zamian, J. R., Rocha Filho, G. N., & Da Costa, C. E. F. (2011). Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresource Technology, 102(10), 5873–5877. https://doi.org/10.1016/j.biortech.2011.02.022

Petzold, A., Marsh, R., Johnson, M., Miller, M., Sevcenco, Y., Delhaye, D., ... & Raper, D. (2011). Evaluation of methods for measuring particulate matter emissions from gas turbines. Environmental Science and Technology, 45(8), 3562–3568. https://doi.org/10.1021/es103969v

Rajpoot, A. S., Saini, G., Chelladurai, H. M., Shukla, A. K., & Choudhary, T. (2023). Comparative combustion, emission, and performance analysis of a diesel engine using Carbon Nanotube (CNT) blended with three different generations of biodiesel. Environmental Science and Pollution Research, 30, 125328–125346. https://doi.org/10.1007/s11356-023-28965-0

Schirmann, J. G., Angilelli, K. G., Dekker, R. F., Borsato, D., & Barbosa-Dekker, A. M. (2019). 3, 3?, 5, 5?-tetramethoxybiphenyl-4, 4?-diol: a new antioxidant enhancing oxidative stability of soybean biodiesel. Fuel, 237, 593–596. https://doi.org/10.1016/j.fuel.2018.10.044

Simhadri, K., Rao, P. S., & Paswan, M. K. (2023). Effect of changing injection pressure on Mahua oil and biodiesel combustion with CeO2 nanoparticle blend on CI engine performance and emission characteristics. International Journal of Hydrogen Energy, 48(66), 26000–26015. https://doi.org/10.1016/j.ijhydene.2023.03.267

St?pie?, Z., ?ak, G., Markowski, J., & Wojtasik, M. (2021). Investigation into the impact of the composition of ethanol fuel deposit control additives on their effectiveness. Energies, 14(3), 604. https://doi.org/10.3390/en14030604

Supriyono, S. H., Almeida, M. F., Dias, J. M. (2015). Influence of synthetic antioxidants on the oxidation stability of biodiesel produced from acid raw Jatropha curcas oil. Fuel Processing Technology, 132, 133–138. https://doi.org/10.1016/j.fuproc.2014.12.003

Sun, Z., Li, X., Nour, M., & Xu, M. (2021). Investigation of flash boiling spray and combustion in SIDI engine under low-speed homogeneous lean operation. SAE Technical Paper. https://doi.org/10.4271/2021-01-0467

Published

2024-02-29

How to Cite

Bhangwar, S., Khan, Z., Shah, A. H., Rind, A. A., Baloch, M. S., Gul, I., & Nawaz, M. (2024). Investigations of carbon and particulate matter emissions of diesel engine using tertiary fuel. Natural and Applied Sciences International Journal (NASIJ), 5(1), 1–13. https://doi.org/10.47264/idea.nasij/5.1.1