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THE ANALYSIS OF HEPATITIS B VIRUS (HBV) TRANSMISSION USING AN EPIDEMIC
MODEL

TAHIR KHAN1, RAHMAN ULLAH1†, GUL ZAMAN2, IMTIAZ AHMAD2

ABSTRACT. In this article, we propose an epidemic problem of hepatitis B with vaccination. So to do this,
first we presents the model formulation and prove that the solutions are bounded and positive. We obtain the
disease free equilibrium and calculate the basic reproduction number (R0). The reproductive number will
be used to find the endemic state of the model. We discuss the qualitative analysis of the proposed problem
and show that whenever, R0 < 1 then the disease free equilibrium is stable locally and globally. Moreover,
whenever, R0 > 1, then the endemic state is asymptotically stable. We derive sufficient conditions for both
the equilibria and its stabilities. Further more numerical simulation are carried out to illustrate the feasibility
of the obtained results and verified that with actual data, we are in the position to put down the hepatitis B
infection form the community. We also highlight the role of epidemic parameters in the disease propagation.
Our numerical works verified the analytical results. Finally some important conclusion are given at the end of
the article.

1. INTRODUCTION

The infection of hepatitis B causes liver disease. Mostly hepatitis caused by a virus, bacterial infections
or continuous exposure to drugs or alcohol [1]. This infection B has multiple phases: acute and chronic.
The first one refers to the initial 200 days after some one exposed to the virus. The immune system usually
able to vanish the virus in acute phase, and so the recovery within some months is possible. But for some
one if the infection remains it leads to the chronic position. This stage of hepatitis B refers to the illness
occurs if the hepatitis B virus remain in the body and with the passage of time, the infection develop serious
health complications. Most of the time often there has no history of acute illness for a person with chronic
illness. This actually produce scarring of liver and become the reason of liver cancer and failure. There are
multiple routes of spreading in the case of hepatitis B, in which semen, blood, and vaginal secretions etc.,
are significant [2, 3, 4]. Also this virus can be transmitted from mother to child at abortion time. Hepatitis
B virus also transferred from sexual contact and razers sharing [5]. The mode of transmission are similar
for both the HBV and HIV, however the HBV virus is fifty to hundreds time more infectious. According
to World Health Organization (WHO), the infection of hepatitis B is a major and sever health problem all
over the world. Because 350 to 400 million people are infected world wide with this contagious infection.
Only in China there are 93 million population have been suffered due to hepatitis B virus infections [6, 7].
Every year almost ten thousands people catch this disease by passing. Since this is a major health issue
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around the world and so for its prevalence high priority strategies are discovered [8]. Effective vaccine are
available with 95 percent effective antibodies [9].

The mathematical modeling of different infectious disease has a rich field and a numbers of research
articles have been studied by various authors (see for detail, [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27]). Similarly modeling of HBV has also a rich literature and different mathematician
and biologists investigated various epidemiological models to study and forecast the future spread of the
disease. Especially in the last some decade the field of epidemiological models are frequently used. A
mathematical model has been used by Medley for minimizing the HBV in Newzeland [28, 29]. Andreson
et al., used a simple model to describe the carries effect on the transmission of HBV [30]. Moreover, a
model has been proposed by Zhao at al [31] to discuss the prediction of HBV using an age structured
model.

In this work, we establish a HBV model. To do this, we split the total population according to the char-
acteristic and so into five epidemiological groups of, S(t), the susceptible, E(t), the exposed, A(t), the
acute, B(t), the chronic and R(t), the recovered/removed individuals. Once we formulate the model, we
prove the positivity and bounded-ness. The equilibria and the basic reproduction number of the proposed
model are calculated to show the stabilities. We prove the local as well as global dynamics of the model.
Linearization along with Herwitz-criteria are used to discuss the local dynamics, while for the global dy-
namics the classic Lyapnov function theory. Finally we discuss the numerical findings and trying to verify
all the analytical works numerically. We also presents some sensitive analysis of important parameters.

2. MATHEMATICAL MODEL AND ITS ANALYSIS

We formulate a mathematical model for the HBV transmission incorporating the exposed group and
dividing the infected class in two group of A(t) and B(t), which shows respectively the acute and the
chronic stages. We use N(t) to symbolize the total population and consequently divide into five groups. In
which the susceptible, S(t) are those individuals who have a chance to got the infection, while the exposed
E(t) represents those who are not infectious, and the infected A(t) represent those individuals which are
infective with acute hepatitis B. Moreover, the infected B(t) are those individual, which are infected with
chronic hepatitis and recovered/removedR(t) represents the recovered with permanent immunity. Thus the
compartmental mathematical model is represented analytically by the following nonlinear system of five
differentials equations:

dS(t)

dt
=Π− αS(t)B(t)− (v + µ0)S(t),

dE(t)

dt
=αS(t)B(t)− (µ0 + β)E(t),

dA(t)

dt
=βE(t)− (µ0 + γ1 + γ)A(t),

dB(t)

dt
=γA(t)− (µ0 + γ2 + µ1)B(t),

dR(t)

dt
=vS(t) + γ1A(t) + γ2B(t)− µ0R(t),

(2.1)

with
S(0) > 0, E(0) ≥ 0, A(0) ≥ 0, B(0) ≥ 0, R(0) > 0. (2.2)
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In Eq.(2.1), Π represent the recruitment rate (assumed susceptible), α is the disease progression rate from
susceptible to exposed, β is the progression rate from exposed class acute, γ is the rate at which infected
with acute hepatitis B individuals moves to the chronic group. γ1 and γ2 are the recovery rates of acute and
chronic groups respectively. µ0 is the natural death rate and µ1 the rate of deaths occur from the infection.
The vaccination rate is v.

Let N(t) represents the sum of all epidemiological groups then N = S+E+A+B+R. So the initial
sizes and the considered problem, make sure that N(t) ≥ 0, hence the total population N(t) is bounded
and remain positive for t > 0. Thus, we have the following result.

Proposition 1. Let X = (S,E,A,B,R) be the solution of the problem as stated by model (2.1), then X is
positive and bounded.

Proof. The differentiability of the right-hand side of the proposed model (2.1) implies the existence of a
unique maximal solution for any associated Cauchy problem, then the 1st equation solution of problem
(2.1) looks like

S(t) = S(0) exp

[
−
{

(v + µ0)t+

∫ t

0
αB(x)dx

}]
+ exp

[
−
{

(v + µ0)t+

∫ t

0
B(x)dx

}]∫ t

0
Π exp

[{
−(v + µ0)y +

∫ l

0
B(u)du

}]
dy > 0.

(2.3)

Similarly, the solution of the 2nd equation of the problem as stated by Eqn.(2.1) implies that

A(t) = A(0) exp [−{(β + µ0)t}] + exp{−(β + µ0)t}
∫ t

0
αB(x)dx exp{−(β + µ0)}ydy ≥ 0. (2.4)

Furthermore, the solution of the 3rd, 4th and 5th equations of the proposed model implies thatA(t), B(t) ≥
0 and R(t) > 0, which shows that the solution (X) of system (2.1) is positive.

Now to show that the solution is bounded we differentiate N(t) and using model (2.1), then dN
dt +

µ0N = Π− µ1B implies that dNdt + µ0N ≤ Π. The integration of both sides and applying the differential
inequality by following [32], we obtain 0 < N(S,E,A,B,R) ≤ Π

µ0
+ ce−µ0t. Letting t → ∞, then

0 < N(S,E,A,B,R) ≤ Π
µ0

, which prove that the solutions of the problem (2.1) are bounded and confined
in the region given by

Ω =

{
(S,E,A,B,R) ∈ R5

+ : N =
Π

µ0
+ ξ

}
(2.5)

for any ξ > 0 and for t→∞. �

3. STEADY STATE ANALYSIS

We study the temporal dynamical behavior of the problem (2.1), so the right hand side is equating to zero
of all the equations. Direct calculation give us, that the model (2.1) has always a disease free equilibrium,
let us denoted by F0 and given by F0 = (S0, E0, A0, B0, R

0), where S0 = v+
Π
µ0

, R0 = µ0(v
v
+
Π
µ0) and

E0 = A0 = B0.
In order to use the disease-free state we figure out the basic reproductive number. Because in epi-

demiological models this quantity is an important role. To find it we follow [33], therefore assuming
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χ = (E(t), A(t), B(t)) so from Eqn.(2.1), we may write

dχ

dt
= F̄ − V̄ ,

where the matrices are define as

F̄ =

 αS(t)B(t)
0
0

 , V̄ =

 (µ0 + β)E(t)
(γ + γ1 + µ0)A(t)− βE(t)
(µ0 + γ2 + µ1)B(t)− γA(t)

 .
Taking the linearization of F̄ and V̄ at F0 we get

F =

 0 0 αS0

0 0 0
0 0 0

 , V =

 q2 0 0
−β q3 0
0 −γ1 q4

 ,
where q2 = µ0 + β, q3 = µ0 + γ + γ1 and q4 = µ0 + µ1 + γ2. Thus the basic reproduction number (R0)
is defined to be R0 = ρ(K̄) = ρ(FV −1), which becomes

R0 =
αS0βγ1

q2q3q4
. (3.1)

Similarly to find the endemic equilibrium, solving Eqn.(2.1) simultaneously for S, E, A, B andR at steady
states respectively, thus we will obtain the unique positive endemic equilibrium denoted by F∗ and define
as F∗ = (S∗, E∗, A∗, B∗, R∗) where

S∗ =
1

αβγ
q2q4, E

∗ =
1

αβγ
q4q1{R0 − 1}, A∗ =

1

αγ

q1q4

q3
{R0 − 1},

B∗ =
1

α
q1{R0 − 1}, R∗ =

1

µ0
{γ1A

∗ + γ2B
∗ + vS∗},

(3.2)

and q1 = µ0 + v. Obviously, if R0 is less then one, than the endemic equilibrium dose not exists, but if
R0 > 1, the unique endemic positive states exists.

We now study the asymptotic stability of our proposed model at both disease free and endemic equilib-
rium. We use the Jacobian and the classic Lyapunov function theory to perform the analysis. Regarding the
stability analysis, we prove the following.

Theorem 1. The disease-free state (F0) of the model (2.1) is asymptotically stable locally and globally
whenever R0 < 1, while unstable if R0 > 1.

Proof. Linearizing Eqn.(2.1) at F0, we obtain a Jacobian matrix (J0) is defined by

J0 =


−(µ0 + v) 0 0 −αb

µ0+v 0

0 −(µ0 + β) 0 αb
µ0+v 0

0 β −(µ0 + γ1 + γ) 0 0
0 0 γ −(µ0 + γ1 + γ) 0
v 0 γ1 γ2 −µ0

 . (3.3)

The characteristic equation of the matrix J0 as stated by Eqn.(3.3) looks like

{λ+ µ0} {λ+ (µ0 + v)}
{
λ3 + a1λ

2 + a2λ+ a3

}
= 0, (3.4)
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where

a1 = β + 3µ0 + µ1 + γ1 + γ2 + γ,

a2 = 3µ2
0 + 2βµ0 + βµ1 + βγ1 + βγ2 + 2µ0µ1 + βγ + 2µ0γ1 + 2µ0γ2 + µ1γ1

+ 2µ0γ + µ1γ + γ1γ2 + γγ2,

a3 = µ2
0γ1 + µ2

0γ + βµ0γ1 + βµ1γ1 + βµ0γ + βµ1γ + βγ1γ2 + µ0µ1γ + βγγ2

+ µ0µ1γ + µ0γ1γ2 + µ0γγ2 + µ0(µ0 + β)(µ0 + µ1 + γ2){1−R0}.

There are five roots of the Eqn.(3.4), which shows that matrix J0 have five corresponding eigenvalues. Two
roots are λ1 = −µ0 and λ2 = −(µ0 + v) and are negative. The rest of the roots are obtained from the
below equation

ψ(λ) = λ3 + a1λ
2 + a2λ+ a3. (3.5)

Clearly roots of the above equation are negative or negative real parts, if the Routh-Hewritz criteria holds
(for detail see [34]). So a3 > 0 and a1 > 0, and a3 < a1a2 if and only if the value of R0 is less then one,
which shows that if R0 < 1, then roots will be negative. But on the other hand whenever R0 > 1 the above
equation roots will be negative and positive, which shows that F0 is unstable saddle point.

Now for global dynamics the problem (2.1) at F0, we construct the Lyapunov function given by

L(t) = k1(S − S0) + k2E(t) + k3A(t) + k4B(t), (3.6)

where ki for i = 1, 2...4 are some constant and will be chosen latterly. Calculating the temporal derivative
of the above function and then using model (2.1), we obtain

dL

dt
= k1(Π− αS(t)B(t)− q1S(t)) + k2(αS(t)B(t)− q2E(t)) + k3(βE(t)− q3A(t))

+ k4(γA(t)− q4B(t)).

Using k1 = k2 = q3q4, k3 = k4 = αS0γ1 and S0 = Π
µ0+v , so the above equation take the following form

dL

dt
= −q1q2q3(S − S0)− q2q3q4

{
1− αβS0γ1

q2q3q4

}
E(t)− αγS0(µ0 + γ1)A(t)− q4αγS0B(t),

dL

dt
= −q1q2q3(S − S0)− q2q3q4 {1−R0}E(t)− αγS0(µ0 + γ1)A(t)− q4αγS0B(t).

Thus dL
dt < 0 and dL

dt = 0 if and only if S = S0, E = E0, A = A0 and B = B0. Following the LaSalle
invariant principle [35], therefore the disease free equilibrium F0 = (S0, 0, 0, 0) is globally stable. �

Theorem 2. The endemic equilibrium state F∗ of the model (2.1) is locally and globally asymptotically
stable, if the following condition are satisfied,

1. R0 > 1
2. αβΠγq3q4 > q1q2

3. q4 > 1

and unstable otherwise.
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Proof. Linearizing the model (2.1) about F∗ gives a Jacobian matrix symbolized by J1, such that

J1 =


−αβΠγ

q2q3
0 0 − q2q3

βγ 0
αβΠγ
q2q3

− q1 −q2 0 q2q3
βγ 0

0 β −q4 0 0
0 0 γ −q3 0
v 0 γ1 γ2 −µ0

 , (3.7)

where
q1 = v + µ0, q2 = β + µ0, q3 = γ2 + µ1 + µ0, q4 = γ1 + γ + µ0.

Now we find the characteristic equation of the Jacobian matrix (J1), which looks like

{λ+ µ0}{λ4 + b1λ
3 + b2λ

2 + b3λ+ b4} = 0, (3.8)

where

b1 = q2 + q3 + q4 + αβΠγ
q3

q2
,

b2 = (αβΠγ + q2 + q4)q3 + q2γ2q4 + αβΠγ
q2

4

q2
+ αβΠγ

q3q4

q2
,

b3 = αβΠγq2
3 + αβbγq2q3 + q4 − q2q3 + αβΠγ

q2
3q4

q2
,

b4 = αβΠγq2
3q4 − q1q2q3.

It is clear from Eqn.(3.8) that there are five corresponding eigenvalues of J1. One of them is λ1 = −µ0 is
negative, while the rest four roots can be obtained by solving the equation given below

ξ(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4. (3.9)

Following the Routh-Hewritz criteria [34] these eigenvalues are negative, if bi > 0 for i = 1, . . . , 4, and
b1b2b3 > b4. So for R0 > 1, αβbγq3q4 > q1q2 and q4 > 1, we obtain bi > 0 for i = 1, . . . , 4, and
b23 + b21b4 < b1b2b3. Thus eigenvalues of J1 are negative if and only if the conditions stated above form 1
to 3 are satisfied.

To establish the global dynamics at F∗ = (S∗, E∗, A∗, B∗, R∗), we construct the Laypnavo function
given by

V (t) =
1

2
{(S − S∗) + (E − E∗) + (A−A∗) + (B −B∗)}2 . (3.10)

Differentiating and using Eqn.(2.1) in the derived result, we get
dV

dt
= (S − S∗) + (E − E∗) + (A−A∗) + (B −B∗)

{
Π− (v + µ0)S

− µ0E − (γ1 + µ0)A− (µ0 + γ2 + µ1)B
}
.

Now using the endemic equilibrium, the above equation can be written as
dV

dt
= (S − S∗) + (E − E∗) + (A−A∗) + (B −B∗)

{
(µ0 + β)E∗

+
1

αβγ
(µ0 + β)(µ0 + v)(µ0 + µ1 + γ2)− (µ0 + v)S − µ0E

− (µ0 + γ1)A− (µ0 + µ1 + γ2)B
}
.
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Simplification with little re-arrangement of the above equation yields
dV

dt
= {(E − E∗) + (S − S∗) + (B −B∗) + (A−A∗)}

{
µ0(E∗ − E)

+
1

αγ
(µ0 + µ1 + γ2)(µ0 + v) + (µ0 + β)(S∗ − S)− µ0E

− (µ0 + γ1)A− (µ0 + µ1 + γ2)B
}
,

implies that
dV

dt
= −{(S − S∗) + (A−A∗) + (E − E∗) + (B −B∗)}

{
µ0(E − E∗)

+ (µ0 + β)(S − S∗) + (µ0 + γ1)A+ (γ2 + µ0 + µ1)(B −B∗)
}
.

Hence dV
dt < 0 whenever R0 > 1 and consequently dV

dt = 0 if and only if S = S∗, E = E∗, A =
A∗, B = B∗, R = R∗. Therefore, the Lassales invariance principle implies that F∗ is stable globally
asymptotically. �

4. NUMERICAL SIMULATIONS

We demonstrate the numerical simulations of the developed model (2.1). This verify the analytical
findings via utilizing the numerical analysis due to the complexity of the analytical solution. We chose
the parameters value with biologically feasibility. Also it is very easy to isolate the behaviour/effect of the
interaction between the different compartments, which is one of the significant advantage of the numerical
analysis. We assume the set of parameters A1 = {Π, α, β, µ0, µ1, γ, γ1, γ2, v}. In which some parameters
value are are taken from the literature and some are assumed. The values of the parameter in A1 are as
follows:

Π = 10, α = 0.4, β = 0.05, µ0 = .2, µ1 = 0.02, γ = 0.23, γ1 = 0.8, γ2 = 0.2, v = 0.98.

For the parameter set A1 the problem (2.1) has only a disease-free state and it is stable see Fig.1a. The
value of α and β are chosen in such a way that R0 < 1. Moreover, again for another set of parameter
A2 = {Π, α, β, µ0, µ1, γ, γ1, γ2, v}, whose all values are equal except α, β, µ1 and γ. In this case all the
listed parameters values would be definitely greater then the above, so the values of the parameters in A2

are as follows:

Π = 10, α = 0.5, β = 0.9, µ0 = 0.2, µ1 = 0.09, γ = 0.4, γ1 = 0.8, γ2 = 0.2, v = 0.98.

For the parameter set A2 the proposed model (2.1) has two equilibria, disease free, endemic equilibrium
and the endemic equilibrium is stable locally asymptotically see Fig.1b. Furthermore at the parameter set
A2, R0 > 1 and the condition at Theorem.4 that is αβΠγq3q4 > q1q2, q4 > 1 satisfied, which ensure the
verification of analytical result at Theorem.4.

5. CONCLUSION

In this work, we developed an epidemic problem for the dynamics of HBV. Therefore we divided the
host population into five groups of susceptible, exposed, infected with acute hepatitis, infected with chronic
hepatitis and the recovered, then formulated the model with this new features. After formulating the model,
we proved the bounded-ness of the solutions of the proposed problem and findR0. We find the steady states
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(A) Solution curves at disease free state
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(B) Solution curves at endemic state

FIGURE 1. The plot visualizes the solution curves at the disease-free and endemic states
with respective set of parameters A1 and A2.

i.e., the infected and uninfected steady states. The disease free equilibrium (F0) is locally stable whenever
R0 < 1, while the endemic state (F∗) is locally stable if R0 > 1. Moreover, all the flows along the axes of
susceptible and recovered are always attractor to the DFE (F0), but the flow along the axes of the infected
compartment that is exposed, infected with acute hepatitis B (A) and the infected with chronic Hepatitis B
B depend on the value ofR0. So, ifR0 < 1 then the axes of infected compartmentE, A andB are attractor
towards the DFE (F0). But when the basic reproduction number acroses one that is R0 > 1, the axes of
these compartment do not attract the DFE (F0) and repels from it. Furthermore for global stabilities we
established the Lyapunov function and proved that the dynamics of the considered problem are investigated
byR0 completely. Finally given the graphical visualizations to the analytical results to verify the results. We
believe that this assumption, extension and the new analysis are plausible biologically and mathematically.
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