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Abstract 
 

Current developments in signal processing are allowing for enhanced seismic illustrations and 

investigation of subsurface structures. Recently, Empirical Mode Decomposition (EMD) and 

Continuous Wavelet Transformation (CWT) have been introduced to extract various features 

from a time series dataset. In this investigation, seismic signal with 10% Gaussian noise is 

transformed into sub-signals by EMD analysis to improve the Signal-to-Noise Ratio (SNR). 

Then, CWT is implemented for each sub-signal to identify the exact locations of seismic 

reflections. The main objective of this study is to utilize the EMD as a noise filter in the time-

domain and CWT to recognize the anomalous zone in each sub-signal. Based on the results of 

EMD and CWT, the true representation of a seismic signal with minimum noise in the time 

domain has been achieved. The successful integration of EMD and CWT is achieved in terms of 

the identification of true seismic reflections as localized anomalous zones at 0.8 sec, 1 sec, and 

1.07 sec.  
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1.  Introduction 

 

Generally, seismic data is generated by a complex framework of which we know nothing. In 

such a framework, predictable behaviour, for example, patterns and periodicities, is 

consequently of incredible interest for a geoscientist. Most conventional numerical techniques 

that look at periodicities in the frequency domain, for example, Fourier investigation, assumed 

that the underlying processes are stationary. While seismic data is non-stationary because the 

frequency is changing with time. Over time, various algorithms have been implemented for the 

characterization of the non-stationary signal. For example, Peyton et al. (1998) implemented 

the spectral decomposition along with coherency for the interpretation of incise valley. Later, 

Partyka et al. (1999) did the reservoir characterization by adopting the widowed spectral 

analysis. Similarly, Castagna et al. (2003) utilized the matching pursuit technique to identify 

low-frequency regions beneath petroleum reservoirs.  While Iqbal et al. (2018a) implemented 

AVO analysis and rock physics computation to identify hydrocarbon reservoirs in two different 

case studies. Furthermore, Liu et al. (2021) proposed the green function for a seismic field to 

estimate the seismic signal parameters. 

 

In this study, we tried to integrate Huang’s Empirical Mode Decomposition (EMD) (Huang et 

al., 1998) and Continuous Wavelet Transformation (CWT) to process and interpret the 

geophysical non-stationary signal. EMD is a very effective time-domain filter and CWT is a 

good mathematical tool to localize the anomalous zone in the time domain. The main objective 

of this work is to illustrate the potential of these new algorithms to enhance SNR and locate 

the seismic reflections at their exact time domain. 

 

2.  Geological model 

 

Initially, a geological model is assumed for this study. Then, a seismic trace of the geological 

anticline structure has been used to analyse the integration of EMD and CWT. Figure 1 

represents the geological model, in the model, the 3rd layer acts as a reservoir and it is pure 

sandstone with 10% porosity. The upper-most portion of the sandstone reservoir is live-oil 

immersed, and the lower portion is saline-water saturated. While the second layer acts as a cap 

rock for hydrocarbon reservoir and it is shale. Similarly, the first layer of the geological model 

begins from the surface to the pinnacle of the 2nd layer. Batzle and Wang's (1992) equations 

are utilized to compute the elastic characteristics of two particular pore fluids (Live-oil & 

saline-water). For pore-fluids substitution in sandstone reservoir, the equation of Gassmann is 

adopted.  

 
Figure 1: Three-layer geological model 
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At the first stage, 1D seismic trace with 10% Gaussian-noise is generated at the centre of the 

geological structure utilizing the convolution model (Yilmaz, 2001), as shown in figure 2. This 

1D seismic trace is later used for the implementation of EMD for de-noising. Next, CWT is 

implemented on each IMD of EMD to validate the results and identify each reflector at its exact 

location. 

 
Figure 2: Synthetic seismic trace of the geological model with and without 10% Gaussian Noise 

 
 

2.1.  Empirical Mode Decomposition (EMD) 

 

EMD obtained absolute recognition in the signal processing society, but the seismic exploration 

society did not give much attention to EMD. Magrin-Chagnolleau and Baraniuk (1999) 

illustrated that the seismic signals can be examined by utilizing the EMD. Furthermore, the 

Rilling et al. (2004) and Flandrin et al. (2004) studies were empowered due to the similarities 

among the signals being. These studies recommended the implementation of EMD as a de-

trending and de-noising tool, which is an essential part of seismic data processing. 

 

EMD is a recently developed algorithm to decompose and study non-stationary time series data 

set (Huang et al., 1998; Wu & Huang, 2004). The EMD has an assumption that the time series 

should consist of intrinsic mode oscillations. These modes or sub-signals are called Intrinsic 

Mode Functions (IMFs).  

 

The main purpose of EMD is to break down a time-series signal into IMFs. EMD generates 

several IMFs based on the local maxima and characteristics of data, where the sum of all these 

IMFs is the original signal (Coughlin & Tung, 2004). There are two basic conditions for each 

IMF: (1) the number of local troughs and peaks and zero-crossing have to equate, and (2) the 

arithmetic mean of the envelope described by the local extrema must be equal to zero 

(Zhongxuan et al., 2004). The procedure of the generation of IMFs exists in the concept of 
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sifting given by Huang et al. (1998). The output of sifting is to get rid of all kinds of trends that 

forbid the IMF from satisfying the conditions of IMFs. Once the conditions of IMFs are 

satisfied, the EMD will not generate any more IMFs. Generally, to envelope the signal, a cubic 

spline is applied to every IMF. The arithmetic mean of the envelope is referred to as mean 

spline. This arithmetic mean of the spline is subtracted from the original signal to generate a 

new IMF. The procedure is reiterated on every new IMF as far as the IMF’s conditions are 

fulfilled. This is not possible to get a zero arithmetic mean spline for a signal; therefore, the 

conditions should be set to gain when the sifting process has efficiently generated IMFs. This 

criterion is pre-arranged between two successive components of sifting for RMS tolerance. For 

example, 𝑋𝑜(𝑡) is sifted to produce the first IMF, 𝑋1(𝑡), by subtracting the mean spline 

(𝑚𝑜(𝑡)). WhileRMS is computed for𝑋𝑜(𝑡), 𝑋1(𝑡), and their difference. According to equation-

1, the sifting process carries on if the RMS contrast is more than tolerance.  

1

𝐽
((∑ 𝑋𝑛−1

𝐽

𝑗=1

(𝑡)2)

1/2

− (∑ 𝑋𝑛

𝐽

𝑗=1

(𝑡)2)

1/2

) 

 

> 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

 

𝑆𝑛+1(𝑡) = 𝑆𝑛(𝑡) − 𝑚𝑛(𝑡) 

                   (1) 

Here, n is 1, 2, 3, and J represents the total no. of samples in the signal. Usually, 1st IMF consists 

of the highest frequencies of the signal, while a no. of low-frequency components is removed. 

Then, the 1st IMF will be subtracted from the original time series signal to generate the 2nd 

IMF. This process of sifting and generation of IMFs keeps going unless it is terminated 

manually, or the process produces all the IMFs along with the residue. The equation of EMD 

for a time-series signal can be written as. 

 

𝐶𝑜(𝑡) = (∑ 𝐶𝑛(𝑡)

𝑁

𝑛=1

) + 𝑟(𝑡)                                                             (2) 

 

Here, 𝐶𝑜(𝑡) is time-series data, 𝐶𝑛(𝑡)is the output as IMFs, N is the no. of IMFs is generated, 

and𝑟(𝑡) is the residual of the signal.  

 

2.2. Continuous Wavelet Transform (CWT) 

 

Continuous Wavelet transformation (WT) is a well-known mathematical means to analyse the 

localized changes within a time series dataset (Mallat & Stephane, 1987). WT produces a time-

scale range instead of a time-frequency range (Rioul & Vetterli, 1991). WT is a powerful 

technique to examine arbitrary oscillation in a time-series dataset (Holschneider, 1995). While 

WT has a sub-class, and it is called CWT. It is far generally exercised for characteristic 

extraction. The basic idea of CWT was obtained from Gabor’s (1946) Short-Time Fourier 

Transform (STFT), in which he kept constant the time window to acquire the entire spectrum 

of frequencies within the time window.  

 

Klausner et al. (2013) has summarized the implementation of CWT to focus on distinct troubles 

for example quality of the dataset, availability of data, database disparity, and inaccuracy 
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factors. For the assessment of CWT, Hua et al. (2014) tested normalizations to attain an 

exclusive depiction of a dataset. Adhikari (2015) accomplished an analysis to characterize a 

time series dataset in the time and scale domain. Iqbal et al. (2018b) have effectively 

consolidated the CWT and Mann Kendal (MK) test to determine the silt burden as well as 

overflow changes in the river. Afterward, Palupi (2018)  utilized CWT for gauging minerals 

profundities in a mineral fertile area in Java, Indonesia. For singularity and damage detection, 

Zhou and Chen (2020) adopted CWT for a comparative analysis between Pet-hat and Morlet 

wavelets.   

 

In CWT, the mother wavelet acts as a filter for the dataset and the wavelet goes through the 

translation and dilation process.  CWT can extend a signal within the time and frequency 

domain, simultaneously. In this way, CWT can analyse and locate a restricted peculiarity in a 

signal distributed at equivalent intervals. The mathematical representation of CWT can be 

formulated as. 

 

W(a, b) =
1

√a
∫ f(t)

1

a
ψ ∗ (

t − b

a
) dt

∞

−∞

 
 

                       (3) 

 

In equation3, ψ(t) represents the mother wavelet and * is a complex conjugate. While, W (a, 

b) are continuous wavelet transform’s coefficients, here, ‘a’ is the translation and ‘b’ is dilation 

parameter. In CWT, the mother wavelet will get contracted because of small estimations of ‘a’, 

and subsequently, it generated high-frequency functions. The mother wavelet will get stretched 

because of high estimations of ‘a’ and delivers low-frequency functions. Since time series is 

time-bounded, that is the reason it gets influenced by edge artifacts and it is called the Cone of 

Influence (COI) (Torrence & Compo, 1998). 

 

In this examination, CWT is utilized to distinguish and affirm seismic reflectors as localized 

anomalies. To limit the peculiar regions, for the mother wavelet, the ‘Haar’ wavelet has been 

used as it has the ability to identify unexpected discontinuities and sudden variations in time-

series dataset. In CWT, two basic functions, i.e., selection of mother wavelet and scaling 

function perform vital parts. Haar wavelet’s scaling function is characterized as follows. 

 

∅(x) = {
1, 𝑖𝑓 0 ≤ 𝑥 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
                           (4) 

 

 

Whereas the Haar wavelet is characterized as. 

 

ψ(x) = {
1, 0 ≤ 𝑥 < 1/2

−1, 1/2 ≤ 𝑥 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                           (5) 

 

The investigation is presented as scalogram, 2D, and 3D CWT coefficients. 

 

3.  Results and discussion 

 

In this examination, three seismic reflectors of a geological model are identified through the 

integration of EMD and CWT. In the geological model, the third layer serves as a reservoir, 

where an upper-most aspect of the reservoir is live-oil immersed, and the remaining part is 
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saline water-saturated. The target of this investigation is to highlight feature extraction through 

the integration of EMD and CWT. At first, a 10% Gaussian noise is included in the seismic 

reflection dataset to create a reasonable situation. Because of the addition of noise, it's difficult 

to characterize accurately various seismic reflectors in seismic data. However, EMD can 

disintegrate the given signal into several IMFs. After the implementation of EMD, CWT is 

executed to recognize and affirm the results of EMD by confining the anomalous zones of each 

IMF. 

 

3.1.  De-noising 

 

After the generation of synthetic seismic trace with 10% noise, EMD is applied to the raw 

seismic trace, which produced five IMFs, as shown in figure 3. In this study, EMD acts as a 

time-domain filter. During the generation of IMFs, the noise starts to decrease and the seismic 

reflections are getting prominent. The 1st IMF represents all the high frequencies of the original 

signal. Then, in the 2ndand 3rd IMF, noise is reduced significantly and the seismic reflections 

are prominent at 0.8, 1, and 1.07 sec. As we move towards the 4th and 5th IMF, although the 

noise is reduced to zero but the seismic reflections also got affected and the second and third 

seismic reflections are almost disappeared. This means that 2nd and 3rd IMF could be used as a 

profound source of information about seismic reflections. 

 
Figure 3: Synthetic seismic trace with 10% Gaussian noise and its 5-IMFs as a result of EMD 

 
 

EMD only accounts for high frequencies and strong trends within the time-series signal. Due 

to the sifting process, it removes the weak and low-frequency trends with the generation of 

each new IMF. Therefore, during the sifting process, with each new IMF, EMD may miss some 

weak trends within the signal. Based on the results of EMD, the 2nd and 3rd IMF present the 

best results to recognize the seismic reflections, and as well as the noise is reduced 

exceptionally. 
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3.2. Continuous wavelet transformation of IMF 

 

To select the accurate IMF, each IMF is transformed using CWT, as shown in figure 4-8. For 

the CWT, the Morlet wavelet is utilized as a mother wavelet for the transformation of each 

IMF. After EMD implementation on seismic signal, the next, cwt has been adopted on the 

EMD results to validate the results and properly define the reflection boundaries in the seismic 

signal. 

 

CWT of each IMF shows that as we move from IMF1 to IMF5, the noise is decreasing 

significantly, and seismic reflections are getting prominent. Since the 1st IMF contains all the 

highest frequencies of the signal; therefore, the scalogram of 1st IMF has not shown any 

prominent seismic reflections as a high energy bright spot. While3D CWT coefficients of 1st 

IMF exhibits two high energy spectrums at 0.8 sec and 1.0 sec along with some other high-

frequency data of the signal, as shown in figure 4. 

 
Figure 4: (a) 1st IMF of seismic trace along with its (b) 2D scalogram and (c) 3D CWT coefficients 

of IMF  

 
 

The CWT of 2nd IMF shows that the noise is reduced prominently and the 2D CWT of 2nd IMF 

is presented as a scalogram with the cone of influence (COI). Within the COI of 2nd IMF, three 

high energy bright spots are distinguished at 0.8 sec, 1 sec, and 1.07 sec. The 1st bright spot is 

the seismic reflection contact at 0.8 sec, 2nd bright spot represents the second seismic reflection 

at 1 sec and the 3rd bright spot is the third seismic reflection at 1.07 sec. Similarly, 3D CWT 

coefficients of the 2nd IMF show much better results in terms of interpretation. Three critical 

high energy ranges can be easily distinguished at 0.8 sec, 1 sec, and 1.07 sec, as shown in the 

figure 5. 
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Figure 5: (a) 2nd IMF of seismic trace along with its (b) 2D scalogram and (c) 3D CWT coefficients 

of IMF  

 
 

However, as we move towards the 3rd IMF, 4th IMF, and 5th IMF, due to the sifting process of 

EMD, the noise vanished completely, but it also affected the seismic reflections. Because of 

the weak trend and low frequency, the 3rd reflection is merged with the 2nd reflection, as we 

can see in the CWT of the last three IMFs, as shown in figures 6-8. 

 
Figure 6: (a) 3rd IMF of seismic trace along with its (b) 2D scalogram and (c) 3D CWT coefficients 

of IMF 
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Figure 7: (a) 4th IMF of seismic trace along with its (b) 2D scalogram and (c) 3D CWT coefficients 

of IMF 

 
 

Figure 8: (a) 5th IMF of seismic trace along with its (b) 2D scalogram and (c) 3D CWT coefficients 

of IMF 

 
 

Based on the results of the CWT of each IMF, the best results are given by the 2nd IMF. This 

suggests that using the EMD as a time-domain filter and CWT as a confirmation tool of 

recognizing the seismic reflections as a localized anomaly, the 2nd IMF is the best output for 

further seismic processing and interpretation of seismic reflection data.  



 

Seismic reflections de-noising and recognition using Empirical Mode Decomposition … 
__________________________________________________________________________________________ 

 

__________________________________________________________________________________________ 

 

NASIJ, 2022, 3(1), 1, 1-12  10 

 

At the end of this study, the statistical analysis is also implemented in terms of confidence 

interval with a 95 % interval for all five IMFs (figure 9). The sum of all the IMFs is the original 

signal (Coughlin & Tung, 2004). The confidence bound also shows the same results, three 

different points from the sum of all IMFs are found beyond the upper and lower bound as 

peculiar regions (0.8 sec, 1 sec, and 1.07 sec). This also supports the findings of CWT of IMFs. 
 

Figure 9: Confidence bounds of all IMFs 

 
 

4.  Conclusion 

 

This study is carried out to examine the non-stationary seismic signal using EMD and CWT. 

Where EMD has been used as a time-domain filter and CWT is used to localize each reflection 

at its exact time location. EMD as a time-domain filter remarkably enhanced the signal-to-

noise ratio by generating multiple IMFs of the original raw seismic signal. With each new IMF, 

EMD reduced the noise significantly. The pro of multiple IMFs is that we can choose the best 

IMF as a true representative of the seismic reflection data. However, the con is that EMD may 

also remove some weak trends with low frequencies.  

 

CWT can explore a signal within the time and frequency space, simultaneously. In signal 

processing, the spectral decomposition of a 1D signal into a scalogram and 3D CWT time 

segment is an extraordinary development. CWT can isolate diverse seismic functions of various 

seismic frequencies and it can also confine the functions as anomalous regions. CWT 

fundamentally relies upon the mother wavelet and scaling function. 

 

By implementing EMD and CWT on seismic trace, it gave us better results to verify the actual 

positions of seismic reflection. These both can be good tools for enhancing the signal-to-noise 

ratio. Similarly, both can provide deep insights during combined analysis in the interpretation 

of seismic reflection data.  
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