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NUMERICAL SOLUTIONS OF TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS
VIA HAAR WAVELETS

A. GHAFOOR

ABSTRACT. An effective wavelet based scheme coupled with finite difference is used for the solution of two
nonlinear time dependent problems namely: Burgers’ and Boussinesq equations. These equations have wide-
spread application in many fields such as viscous medium, turbulence , fluid dynamics, infiltration phenomena
etc. The proposed scheme convert the partial differential equations (PDE) to system of algebraic equations.
The obtained system can be solved easily. In this paper convergence of the scheme is also discussed to show
validity of the technique. Effectiveness of the scheme is shown with the help of test problems. Numerical
results verify that the suggested scheme is more accurate, convenient, fast and require low computational cost.

1. INTRODUCTION

Various important physical phenomenon such as: turbulence problems, shock waves, continuous sto-
chastic etc. are modeled via Burgers’ equation given as

∂tY + Y ∂xY =
1

R
∂xxY, (x, t) ∈ Γ×∆ (1.1)

with initial conditions
Y (x, 0) = χ(x), x ∈ Γ (1.2)

and boundary conditions
Y (a, t) = Υ1(t), Y (b, t) = Υ2(t) t ∈ ∆ (1.3)

where R is Reynolds number, Γ and ∆ are respectively space and time domains. This equation was initi-
ated by Bateman [5] in 1915. Later on in 1948 Burgers [7, 8] studied this equation for serval structures of
turbulent fluid. Eq. (1.1) is equivalent to Navier-Stokes equations and chiefly containing convection and
diffusion terms. The ground water flows serve a vital importance in different fields such as fluid dynam-
ics, biomathematics, chemical engineering and environmental problems. The infiltration phenomena was
observed by Boussinesq in 1903. Mathematical form of this process give rise to Boussinesq equation

∂tY = Y ∂xxY + (∂xY )2 , (x, t) ∈ Γ×∆ (1.4)

coupled with initial condition
Y (x, 0) = χ1(x), x ∈ Γ (1.5)
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and boundary conditions

Y (a, t) = Γ1(t), Y (b, t) = Γ2(t) t ∈ ∆ (1.6)

In above two case Burger’s equation has been studied by many authors with the help of different numerical
methods such as: cubic B-spline finite elements [2], Chebyshev spectral collocation [17], Quartic B-spline
differential quadrature [18], finite element [27], a parameter-uniform implicit difference scheme [16], a
novel numerical scheme [31], homotopy analysis [30], Semi-Implicit Finite Difference [29], Variational
iteration [1] etc.
In last decays wavelets based numerical schemes became popular among the researchers. Initially wavelets
based techniques were used for solution of initial and boundary value problems in 1980s. Among differ-
ent wavelet groups Haar wavelets are the simple one. They are composed of piecewise constant functions
which were defined by Alfred Haar in 1910. The attraction of these wavelets is to integrate them in arbi-
trary times. Haar wavelets are not applicable for the direct solution of differential equations because they
are discontinuous at the end point of different intervals. Their derivatives do not exist at the points of dis-
continuities. To overcome this difficulty Cattani [9] used interpolating splines to regularize these wavelets.
The other approach, introduced by Chen and Hsiao [10] in 1997, is integral method. This approach became
popular and was used for the solution of different differential equations [3, 9, 12, 11, 24]. Lepik [19, 21]
introduced Haar wavelet based collocation method to solve evolution equations and higher order problems.
The same author [20] implemented two dimensional Haar wavelets for the solution of PDEs. Jiwari [14]
studied Burgers’ equation using Haar wavelets coupled with quasilinearization technique. Mittal et al. [23]
solved system of viscous Burger’s equations using Haar wavelets. Oruc et al. [25, 26] applied Haar wavelets
finite difference hybrid method to solve modified Burger’s and KdV equations. Recently Somayeh et al.
[4] implemented Haar wavelets based scheme for the solution of system of PDEs.
In the present work, we use quasilinearization to linearize nonlinear terms and then θ− weighted scheme
coupled with Haar wavelets for the solution of Burgers’ and one dimensional Boussinesq equations. The
results obtained through proposed numerical scheme are matched with earlier work. Computation shows
that present method is reliable, efficient and computationally less expensive.
The paper is arranged in the following way: Preliminaries of Haar wavelets and their integral are discussed
in section 2, the scheme is presented in section 3, convergence analysis are shown in section 4 while test
problems are repotted in section 5.

2. HAAR WAVELETS

To define the Haar wavelets for an arbitrary finite domain Γ = [a, b], we refer to the paper [20]. Let us
consider M = 2λ, where λ denote the maximum resolution level, and β = 2M . The domain is participated
into β subintervals with equal mesh size δx = b−a

β . The 1st and kth Haar wavelets are respectively defined
as follows:

h1(x) =

{
1 x ∈ [a, b]

0 otherwise.
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(2.1)

hk(x) =


1 x ∈ [η1(k), η2(k))

−1 x ∈ [η2(k), η3(k))

0, otherwise
(2.2)



where

η1(k) = a+ 2ζνδx, η2(k) = a+ (2ζ + 1) νδx, η3(k) = a+ 2 (ζ + 1) νδx, ν =
M

µ
,

τ = 0, 1, ...λ, ζ = 0, 1, ...µ− 1, µ = 2τ , k = µ+ ζ + 1.

For the solution of nth order differential equation, one need the following iterated integrals

Pn,k(x) =

∫ x

a

∫ x

a
· · ·
∫ x

a
hk(z)dz

n =
1

(n− 1)!

∫ x

a
(x− z)n−1 hk(z)dz,

k = 1, 2, . . . , 2M.

Analytical expressions for above integrals are given by

Pn,1(x) =
(x− a)n

n!
. (2.3)

Pn,k(x) =


0, x < η1(x)
1
n! [x− η1(k))n , x ∈ [η1(k), η2(k))
1
n! [(x− η1(k))n − 2((x− η2(k))n) , x ∈ [η2(k), η3(k))
1
n! [(x− η1(k))n − 2((x− η2(k))n + (x− η3(k))n) , x > η3(k).

(2.4)

3. METHOD DESCRIPTION

In this section, the proposed method has been discussed which will be used for the solution of nonlinear
test examples. In this technique, for the solution of problem (1.1)-(1.3), θ − weighted scheme is used for
spacial part whereas finite difference for time derivative as given below

Y ξ+1 − Y ξ

∆t
+ θ (Y ∂xY )ξ+1 + (1− θ) (Y ∂xY )ξ =

1

R

[
θ (∂xxY )ξ+1 + (1− θ) (∂xxY )ξ

]
(3.1)

the boundary conditions (1.3) takes the form

Y (a, tξ+1) = Υ1(t
ξ+1); Y (b, tξ+1) = Υξ+1

2 . (3.2)

To linearize the nonlinear term (Y ∂xY )ξ+1 in Eq. (3.1) applying quasilinearization technique, we obtain

(Y ∂xY )ξ+1 ∼= Y ξ+1 (∂xY )ξ + (∂xY )ξ+1 Y ξ − Y ξ (∂xY )ξ . (3.3)

Using Eq. (3.3) in Eq. (3.1), we get

Y ξ+1 + ∆t

[
θY ξ+1 (∂xY )ξ + θ (∂xY )ξ+1 Y ξ − θ

R
(∂xxY )ξ+1

]
= Y ξ + ∆t(1− θ)

[
1

R
(∂xxY )ξ − (Y ∂xY )ξ

]
+ ∆tθ (Y ∂xY )ξ .

(3.4)

Next, approximating the highest order derivative in Eq. (3.4) by Haar wavelets series

(∂xxY )ξ+1 =

β∑
k=1
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where ωk are wavelets coefficients to be determine and hk are Haar wavelets. Integrating Eq. (3.5) twice in
domain [a, x] gives

∂xY
ξ+1 =

β∑
k=1

ωkP1,k(x) + [∂xY (a)]ξ+1 (3.6)

Y ξ+1 =

β∑
k=1

ωkP2,k(x) + (x− a) [∂xY (a)]ξ+1 + Y ξ+1(a). (3.7)

Using boundary condition at x = b (refer to Eq. (3.2)) in Eq. (3.7), the unknown term [∂xY ]ξ+1 (a) is
computed as

[∂xY (a)]ξ+1 = Υξ+1
2 (b)−Υξ+1

1 (a)− 1

b− a

β∑
k=1

ωkP2,k(b). (3.8)

Substituting value from Eq. (3.8) in Eqs. (3.6) and (3.7), one can write

[∂xY ]ξ+1 =

β∑
k=1

ωk{P1,k(x)− 1

b− a
P2,k(b)}+ Υξ+1

2 (b)−Υξ+1
1 (a) (3.9)

Y ξ+1 =

β∑
k=1

ωk{P2,k(x)− x− a
b− a

P2,k(b)}+ (x− a)
[
Υξ+1

2 (b)−Υξ+1
1 (a)

]
+ Υξ+1(a). (3.10)

Putting values from Eqs. (3.5), (3.9) and (3.10) in Eq. (3.4) and using the collocation points, xm =
m−0.5
β , m = 1, 2, . . . , β, leads to the following system of algebraic equations

β∑
k=1

ωk
[
Q(k,m) + ∆tθQ(k,m) (∂xY )ξx=xm + ∆tθU(k,m)Y ξ

x=xm

−θ∆t
R

H(k,m)
]

= Y ξ
x=xm + ∆t(1− θ)Γ + ∆tθ (Y ∂xY )ξx=xm − Ω(1 + ∆tθ)

−∆tθ
[
Υξ+1

2 −Υξ
1

]
Y ξ
x=xm

(3.11)

where

Q(k,m) = P2,k(xm)−
(
x− a
b− a

)
P2,k(b), U(k,m) = P1,k(x)− 1

b− a
P2,k(b),

Ω =

(
x− a
b− a

)
x=xm

[
Υξ+1

2 (b)−Υξ+1
1 (a)

]
+ Υξ+1

1 (a),

Γ =
1

R
(∂xxY )ξx=xm − (Y ∂xY )ξx=xm , H(k,m) = hk(xm).

Solving the system (3.11), we get the wavelet coefficients wk. Once these coefficients are determined, the
approximate solution can be obtained from Eq. (3.10). For numerical computation θ = 1

2 and the domain
[a, b] = [0, 1] have been used.
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4. ERROR ANALYSIS

In this section, the error analysis of the current scheme Eq. (3.10) has been examined via asymptotic
expansion. Similar procedure can be applied to Eq. (1.4) as well. The following lemma [22] is required for
the proof of the convergence theorem.

Lemma 1. (see [22]) If Y (x) ∈ L2(R) with
∣∣Y ′(x) | | ≤ ρ |, for all x ∈ (0, 1), ρ > 0 and Y (x) =∑∞

k=0 ωkhk(x). Then | ωk |≤ ρ
2τ+1 .

Theorem 1. If Y (x) and Yβ(x) be exact and approximate solution of Eq. (1.1), then the error norm ‖ Eλ ‖
at λth resolution level is

‖ Eλ ‖≤
4ρ

3

(
1

2λ+1

)2

. (4.1)

Proof: see [13]. �

5. TEST PROBLEMS

In this section, the suggested techniques is applied to sleeted problems. The obtained results are matched
with earlier work which shows effectiveness of the proposed scheme.

Example 1. Case 1: Consider Eq. (1.1) with initial and boundary conditions

Y (x, 0) = sin(πx) 0 < x < 1; Y (0, t) = Y (1, t) = 0 t > 0. (5.1)

Applying the scheme discussed in section 3 and replacing x by xm, we get the following system of
equations

β∑
k=1

ωk

[
Q+

∆t

2
Q (∂xY )ξ +

∆t

2
U Y ξ − δtθ

R
hk(xm)

]
= Y ξ +

∆t

2R
(∂xxY )ξ (5.2)

where
Q = P2,k(xm)− xmP2,k(1), U = P1,k(xm)− P2,k(1), m = 1, 2, . . . , β.

Eq. (5.2) gives system of β equation in β unknowns ωk.
Case 2: In this case the following initial and boundary conditions are taken with Eq. (1.1)

Y (x, 0) = 4x(x− 1), 0 < x < 1, Y (0, t) = Y (1, t) = 0, t > 0. (5.3)

The solution has been obtained for different values of R in both cases (Case1 and 2). The results are
compared with the results of different methods in literature and are shown in Tables 1-5 (case 1) and 6-9
(case 2). From the tables it is obvious that the present results are better than the other techniques. The
solution profiles are plotted in Figures 1-4.

Example 2. In this example, we consider Eq. (1.4) combined with initial and boundary conditions

Y (x, 0) = 1− x2, 0 < x < 1, Y (0, t) = 1; Y (1, t) = 0, t > 0. (5.4)

Applying the proposed scheme, we obtain

Y ξ+1 −∆tθ (Y ∂xxY )ξ+1 −∆tθ
[
(∂xY )2

]ξ+1
=

Y ξ + (1− θ)
[
(Y ∂xxY )ξ +

(
(∂xY )2

)ξ]
. (5.5)
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Linearizing the nonlinear terms by formulas

[Y ∂xxY ]ξ+1 = Y ξ+1 (∂xxY )ξ + (∂xxY )ξ+1 Y ξ − (Y ∂xxY )ξ+1 (5.6)[
(∂xY )2

]ξ+1
= 2 (∂xY )ξ+1 (∂xY )ξ −

(
(∂xY )2

)ξ
. (5.7)

The approximations of (∂xxY )ξ+1 , (∂xY )ξ+1 and, Y ξ+1 are given by

(∂xxY )ξ+1 =

β∑
k=1

wkhk(x) (5.8)

(∂xY )ξ+1 =

β∑
k=1

wk [P1,k(x)− P2,k(1)]− 1 (5.9)

Y ξ+1 =

β∑
k=1

wk [P2,k(x)− xP2,k(1)]− x+ 1 (5.10)

Using Eqs. (5.6)-(5.10) in Eq. (5.5), we get the following system of equations when x = xm

β∑
k=1

ωk

[
Q− ∆t

2
Q (∂xxY )ξ − ∆t

2
hk(xm)Y ξ −∆tU (∂xY )ξ

]
(5.11)

= Y ξ +

[
x− 1 +

∆t

2
(1− x) (∂xxY )ξ −∆t (∂xY )ξ

]
, m = 1, 2, . . . , β,

where Q and U are the same as given in Example 1. Here also Eq. (5.11) generates β number of equation
in so many unknowns. The system has been solved for wk and then approximate solution has been obtained
from Eq. (5.10). The results computed, compared with those of finite differences and are listed in Table 10.
The results of the present method are in good agrement with those available in literature. Solution profile
is plotted in Figure 5.

6. CONCLUDING REMARKS

In this work, Haar wavelets technique is used to compute approximate solutions of Burger’s and Boussi-
nesq equations. The obtained solutions are compared with those available in literature. It has been predicted
that the results of the present technique are better and more accurate. This method can applied to such type
of other problems and can be extended to higher dimensions also.
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FIGURE 1. Solution profiles of example 1 (case 1) when (a) : R = 1,∆t = 0.001, R =
10,∆t = 0.01R = 100,∆t = 0.01, R = 200,∆t = 0.01, δx = 0.0125
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FIGURE 2. 3D plot of example 1 (case 1) when (a) : Re = 1,∆t = 0.001, (b) : Re =
10,∆t = 0.01
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TABLE 7. Comparison between present results, exact and those available in literature for
example 1 (case 2) when ∆t = 0.01, R = 10

x T [15] [28] Present (λ = 5) Present (λ = 7) Exact
0.25 0.4 0.31743 0.31735 0.31752 0.31751 0.31752

0.6 0.24609 0.24603 0.24614 0.24613 0.24614
1.0 0.16558 0.16554 0.16561 0.16559 0.16560
3.0 0.02776 0.02775 0.02775 0.02775 0.02776

0.5 0.4 0.58446 0.58441 0.58457 0.58453 0.58454
0.6 0.45791 0.45786 0.45802 0.45797 0.45798
1.0 0.29831 0.29826 0.29838 0.29834 0.29834
3.0 0.04107 0.04105 0.04106 0.04106 0.04106

0.75 0.4 0.64558 0.6457 0.64566 0.64563 0.64562
0.6 0.50261 0.50265 0.50270 0.50268 0.50268
1.0 0.29582 0.2958 0.29585 0.29585 0.29586
3.0 0.03044 0.03043 0.03043 0.03043 0.03044

TABLE 8. Comparison between present results, exact and those available in literature for
example 1 (case 2) when ∆t = 0.01, R = 100

x T [15] [28] Present (λ = 5) Present (λ = 7) Exact
0.25 0.4 0.36273 0.36339 0.36226 0.36226 0.36226

0.6 0.28212 0.28228 0.28203 0.28203 0.28204
1.0 0.19467 0.19458 0.19469 0.19469 0.19469
3.0 0.07613 0.07607 0.07613 0.07613 0.07613

0.5 0.4 0.69186 0.70088 0.68371 0.68369 0.68368
0.6 0.55125 0.55671 0.54833 0.54832 0.54832
1.0 0.38627 0.38826 0.38568 0.38567 0.38568
3.0 0.15218 0.15223 0.15218 0.15218 0.15218

0.75 0.4 0.94940 0.96667 0.92061 0.92056 0.92050
0.6 0.79399 0.81017 0.78305 0.78302 0.78299
1.0 0.57170 0.57942 0.56933 0.56932 0.56932
3.0 0.22778 0.22824 0.22777 0.22774 0.22774
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TABLE 9. Comparison between present results, exact and those available in literature for
example 1 (case 2) when ∆t = 0.01, R = 200

x T [15] Present (λ = 5) Present (λ = 7) Exact
0.25 1 0.19625 0.19608 0.19608 0.18879

5 0.04741 0.04741 0.04741 0.04741
10 0.02434 0.02433 0.02433 0.02434
15 0.01636 0.01636 0.01636 0.01636

0.5 1 0.39072 0.38802 0.38801 0.38802
5 0.09482 0.09481 0.09481 0.09481
10 0.04866 0.04866 0.04865 0.04866
15 0.03255 0.03255 0.03255 0.03255

0.75 1 0.58149 0.57257 0.57257 0.57256
5 0.14218 0.14216 0.14215 0.14215
10 0.07151 0.07155 0.07151 0.07152
15 0.04432 0.04435 0.04432 0.04433

TABLE 10. Comparison of present results with those available in literature of example 2
when T = 0.0125,∆t = 0.00025, R = 1.0

x [6] Present (λ = 5) Present (λ = 7)
0.0 1.000000 1.000000 1.000000
0.1 0.974726 0.976778 0.974729
0.2 0.940947 0.944126 0.940951
0.3 0.892820 0.896005 0.892822
0.4 0.827388 0.829832 0.827389
0.5 0.743626 0.744915 0.743626
0.6 0.641297 0.641141 0.641297
0.7 0.520367 0.518500 0.520367
0.8 0.380833 0.376990 0.380832
0.9 0.222816 0.216656 0.222691
1.0 0.000000 0.000000 0.000000
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FIGURE 3. Solution profile of example 1 (case 2) when (a) : R = 1,∆t = 0.001, R =
10,∆t = 0.01R = 100,∆t = 0.01, R = 200,∆t = 0.01, δx = 0.0125
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FIGURE 4. 3D plot of example 1 (case 2) when (a) : Re = 1,∆t = 0.001, (b) : Re =
10,∆t = 0.01
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