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Abstract:  

Continuous probability distributions are always helpful in lifetime data and 

health-related data sets. Various techniques exist to develop new probability 

distributions, adding new parameters and applying different 

transformations. Adding new parameters is not always good; rather, it can 

also have complex expressions for the function and properties. This 

research aimed to develop a model without adding new parameters, which 

will work more efficiently than the existing models. This study proposes a 

new probability density function by taking the inversion of a random 

variable whose probability density function is Unit Gompertz Distribution. 

The newly proposed distribution is called an Inverse Unit Gompertz 

Distribution (IUGD). Various properties include reliability/survivorship 

measures, odd function, elasticity, and Mills ratio. Different statistical 

properties such as moments, quantile function, and Lorenz and Bonferroni 

curves for IUGD are developed. Five estimation methods are discussed for 

unknown parameters of the IUGD, and simulations have been conducted. 

Finally, IUGD is applied to two real-life data sets, i.e., COVID-19 death 

rates in the Netherlands and the pain relief time of individuals who received 

analgesics experienced. IUGD is flexible compared to other competing 

densities. Moreover, the proposed density can be used for health-related 

data sets to take accurate precautions and treatments.  
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1. Introduction 

 

Gompertz (1825) first presented the Gompertz Distribution (GD), especially in relation to 

actuarial tables and human mortality. Since then, demographers and actuaries have shown 

significant interest in this distribution. The GD is an extension of the exponential distribution 

and has many uses in practical situations, especially in actuarial and medical research. 

Intriguing similarities between it and well-known distributions are the exponential, double 

exponential, Weibull, extreme value (Gumbel Distribution), and generalized logistic 

distribution. The GD's exponentially rising failure rate for system lifetimes is remarkable. 

Several writers have significantly contributed to this distribution's statistical methods and 

characterization recently.  

 

Garg et al. (1970) studied the Gompertz distribution's statistical characteristics and estimated 

the distribution's parameters using the maximum likelihood approach. Data on the effect of 

prolonged oral contraceptives on mouse mortality served as the basis for their inquiry. On the 

other hand, Jaheen (2003) looked into the GD from a different angle using a Bayesian analysis 

approach and centred work on progressive type-II censoring and record values. Many 

researchers have tried a lot of generalizations of the GD. There have been several significant 

advancements in the area. Bemmaor (1994) proposed the shifted GD. Roy and Adnan (2012) 

proposed the wrapped generalized GD. Abu-Zinadah (2014) proposed estimation methods to 

estimate the shape parameter of the exponential GD. Dey et al. (2018) developed some 

properties and estimations for the GD, Lee and Seo (2020) investigated different estimation 

approaches for the GD under censoring, Eliwa et al. (2020) proposed a the discrete Gompertz-

G family of distributions, and El-Morshedy et al. (2020) proposed a generalization of the 

inverse GD.   

 

Mazucheli et al. (2019) introduced a novel distribution known as the Unit Gompertz 

Distribution (UGD). This distribution was derived from the GD through a transformation 
TY e−= involving a variable T which follows the GD. Equation (1) is a representation of the 

UG distribution's Cumulative Distribution Function (CDF): 

 

( ) ( )| , exp 1F y y    − = − −
 

                                  (1) 

 

The corresponding Probability Density Function (PDF) is given in Equation (2). 

 

( ) ( ) ( )1
| , exp 1f y y y

    
− + − = − −

 
,  0 1y                              (2) 

 

Where 0, 0y   and 0  are scale and shape parameters, respectively. 

 

Various work has been by researchers including Jha et al. (2019) reliability estimation on UGD, 

Jha et al. (2020) reliability estimation under censoring for UGD, Lee et al. (2020) discussed 
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different estimation methods for the GD under progressive type-II censoring, Khaleel et al. 

(2020) investing distribution, stress exponential GD, Kumar et al. (2020) described the 

inference for the UGD based on record values theory, Arshad et al. (2021) discussed Bayesian 

inference on UGD, Bantan et al. (2021) discussed theory and applications on UGD, a stress 

strength reliability estimation for the UGD discussed by Alsadat et al. (2023), and Adegoke et 

al. (2023) proposed Topp-Leone Inverse GD with different estimation methods and 

applications. 

 

The UG distribution outperforms well-renowned life distributions like other unit interval 

distributions regarding goodness of fit. Due to various hazard rate shapes, t can capture multiple 

hazard rate shapes. The UG distribution is particularly suitable for modelling skewed data that 

other common distributions cannot adequately describe. It finds applications in diverse fields 

such as environmental studies, industrial reliability, and survival analysis. The UG distribution 

has also been used to solve modern reliability estimation issues. For instance, Jha and Dey 

(2020) studied the application of the UG distribution to evaluate the reliability of 

multicomponent stress strength under progressive type II censoring. The use of the record 

values and the inter-record times in conjunction with the UG distribution for the inference was 

also covered. 

 

More generally, numerous methods exist for transforming an existing distribution into a new 

one. The inverse transformation method, which uses the common inverse function (sometimes 

called the ratio function), is one of the most well-known techniques. In a more particular 

context, we use the inverse of random variable X as 1/Y, where Y is a random variable that 

follows an existing distribution. The Inverse Unit Gompertz distribution (IUGD) is a novel 

inverse distribution that is introduced in this article using the information mentioned earlier as 

its basis. The IUGD is conceptualized as a basic two-parameter distribution with a support 

range  )1, . The proposed distribution is continuous in nature and valuable in fields such as 

lifetime data sets, reliability engineering (to improve the quality of products), health and 

medicine (survival times, deaths, proper medication etc.), economy and revenue (to check the 

wealth condition of a nation, policy making) etc.  

 

The structure of this paper is outlined as: the Section 2 presents methodology including the 

data, tools, methods, and material where the formulation of the IUGD with graphical 

presentation is presented; the Section 3 presents the reliability measures of the proposed density 

(which is useful for life data analysis); the Section 4, is about mathematical framework 

including some important curves (which useful to check economic conditions) and order 

statistics of the IUGD is proposed; the Sections 5, discusses different estimation methods to 

estimate the parameters for IUGD; the Section 6 comprehensively explains simulation study; 

the Section 7 presents the application of the IUGD on life-time data sets; and Section 8 

concludes the study. 
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2. Methodology 

 

2.1. Formulation of the proposed distribution  

 

The formulation of the IUGD involves the Cumulative Distribution (CDF) by taking 1X Y= , 

where Y conforms to the UGD with support [0,1). Consequently, the support of the IUGD 

extends from 1 to positive infinity, encompassing the range  )1, . The expression for 

calculating the IUGD's Cumulative Distribution Function (CDF) is given by the Equation (3). 

 

                                               ( ) ( )1 exp 1F x x = − − −
 

                                                                      (3) 

 

The PDF of IUGD is established as given in Equation (4). 

 

( ) ( )1 exp 1f x x x  −  = − −
 

,   1x                                    (4) 

 

For 1x  , we naturally choose to set ( ) 0f x = .  

 

The PDF in Equation (4) contains significant information about the IUGD's modelling 

capabilities. Its capacity to define the numerous shapes and forms the PDF can assume is 

particularly significant. 

 

Figure 1: Density plots of IUGD for different values of  and   
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The density plots in Figure 1 clearly indicate that the IUGD has a single peak i.e., unimodal 

distribution and takes on several shapes depending on the value of ,  . The parameter 

defines whether the curve shrinks or expands, whereas the parameter   dictates the shape of 

the curve. The IUGD can have several shapes, such as an L-shape, symmetry, or positively and 

negatively skewed forms, as seen in Figure 1.   

 

From Figure 1(a), it is observed that for 𝛼 = 1, and for different values of 𝛽, the shape of the 

density plot is right and left skewed, reverse U shape, and peaked and flat as well. From Figure 

1(b), it can be seen that for 𝛼 = 2, and for different values of 𝛽, the shape of the density plot 

is right and left skewed, but more peaked as compared to plot in (a). From Figure 1(c), it is 

perceived that for  𝛼 = 4, and for different values of 𝛽, the density plot is right skewed for 

smaller values of  𝛽 and as 𝛽 increased the shapes are approaching to normality.  

 

3. Reliability measures of IUGD 

 

In this section, a few reliability measures such as survival function, hazard rate function (failure 

rate), cumulative hazard function, reversed hazard function, odd function, mills ratio, and 

elasticity for IUGD have been developed. 

 

The Survival Function (SF) for the IUGD is given in Equation (5).  

( ) ( )exp 1S x x = − −
 

,  1x                                         (5) 

Additionally,  ( ) 1S x =  for 1x  .  

 

The corresponding Hazard Rate Function (HRF) is given in Equation (6). 

 

( ) 1h x x −= , 1x                                                    (6) 

 

The IUGD shows a hazard rate function in the figure above that can either decrease, increase, 

or remain constant for different values of 𝛼 𝑎𝑛𝑑 𝛽.  

 

The CHF is defined as follows. 

 

                                                   ( ) ( ) ( )( )
1

log

x

H x h t dt S x= = −                   (7) 

 

So, for IUGD the CHF is defined as follows. 

 

( ) ( )1H x x= −                                                               (8) 
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The reversed hazard rate for IUGD is given in Equation (9). 

 

( )
( )

( )

1 exp 1

1 exp 1

x x
r x

x

 



 



−  − −
 =

 − − −
 

                                                (9) 

 

The odd function for IUGD is given in Equation (10). 

 

( )
( )

( )

( )

( )

1 exp 1

exp 1

xF x
O x

S x x









 − − −
 = =

 − −
 

                                                 (10) 

 

The Mills ratio for IUGD is given in Equation (12). 

 

( )
( )

( ) 1

1S x
M x

f x x −
= =                                                       (11) 

 

The IUGD's elasticity is given below in Equation (13). 

 

( )
( )

( )

( )

( )

exp 1

1 exp 1

x xxf x
x

F x x

 



 




 − −
 = =

 − − −
 

                                   (12)  

 

Figure 2: Hazard rate plots of IUGD for different values of  and   
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From Figure 2 (a), (b) and (c), it can be seen that for 𝛽 = 1, the HRF for IUGD is constant, for 

𝛽 < 1, the HRF is decreasing and for 𝛽 > 1, it is increasing. For smaller values of 𝛽 it is 

determined that initially the failure rate is high and then it is decreasing with time, but for larger 

values of 𝛽 initially the failure rate is low and then increases with time. Generally, the IUGD 

shows a hazard rate function in the Figure above that can either decrease, increase, or remain 

constant for different values of 𝛼 𝑎𝑛𝑑 𝛽. The CHF is defined as follows: 

 

                                              ( ) ( ) ( )( )
1

log

x

H x h t dt S x= = −                                                (13) 

 

So, for IUGD the CHF is defined as follows. 

 

( ) ( )1H x x= −                                                               (14) 

 

The reversed hazard rate for IUGD is given in Equation (15). 

 

( )
( )

( )

1 exp 1

1 exp 1

x x
r x

x

 



 



−  − −
 =

 − − −
 

                                                (15) 

 

The odd function for IUGD is given by Equation (16). 

 

( )
( )

( )

( )

( )

1 exp 1

exp 1

xF x
O x

S x x









 − − −
 = =

 − −
 

                                                 (16) 

 

The Mills ratio for IUGD is given by Equation (17). 

 

( )
( )

( ) 1

1S x
M x

f x x −
= =                                                       (17) 

 

The IUGD's elasticity is given by Equation (18). 

 

( )
( )

( )

( )

( )

exp 1

1 exp 1

x xxf x
x

F x x

 



 




 − −
 = =

 − − −
 

                                       (18) 

 

4. Some mathematical properties of IUGD  

 

This section focuses on determining some mathematical properties of IUGD, such as the 

moments, quantile function, median, mode, Bonferroni and Lorenz Curves, and order statistics.  



 
S. Bashir, A. Tayyab, N. Mushtaq, I. B. Naqvi, Vafaeva, K. M. 

__________________________________________________________________________________________ 
 

__________________________________________________________________________________________ 
 
NASIJ, 2023, 4(2), 3, 41-62  48 
 

4.1. Moments  

 

Moments are crucial in statistical analysis and are extremely important, especially in practical 

work. Moments enable the analysis of key aspects and traits of a distribution, including 

tendency, dispersion, skewness, and kurtosis. The 𝑟𝑡ℎ moments for IUGD are defined as.  

 

( )' 1

1

'

exp 1

1 ,

r

r

r r

x x x dx

e r

 





  

 






−  = − −
 

= +


    (19) 

 

Therefore, the mean and variance for IUGD are given as follows. 

 

1

1
1 ,

e



 




= +                                                         (20) 

 
2

2

2

2 1
1 , 1 ,

e
e






  
 



   
= + − +   

   

                                          (21) 

 

The quantile function of IUGD is obtained by using ( ) ( )1x Q p F p−= =  

 

( )( ) 
1

exp log log 1 logx p 


 
= − − − 

 
                                         (22) 

 

The median for IUGD is as follows. 

 

( ) 
1

exp log log 2 logm  


 
= + − 

 
                                           (23) 

 

The first derivative of the logarithm of the IUGD probability density function is given as: 

 

( ) 11
log

d
f x

dx x


 −−

= −                                                (24) 

 

Therefore, by finding the equation’s root, the mode of the IUGD, can be found as follows. 

 

( ) 11
log 0

d
f x

dx x


 −−

= − =     (25) 
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Hence, if 0x x=  

1

0

1
x





 −
=  
 

                                                       (26) 

The second derivative is given as: 

 

( )
( )

( )
2

2

2 2

1
log 1 0

d
f x x

dx x


  −

−
= − − −                                 (27) 

 

It follows from this 

1

0

1
x





 −
=  
 

is the only critical point where ( )| ,f x   is maximized.  

 

4.2. Order statistics  

 

Let ( ) ( ) ( )1 2
...

n
X X X   represent the associated order statistics for a sample of size 

1 2, ,..., nX X X  taken at random from the IUGD. The CDF and PDF of the thr order statistic, 

designated as ( )r
X is found by using Equation (26). 

 

( ) ( )  ( ) 1 exp 1 exp 1
n i n i

r

i k

n
F x x x

i

  
−

=

     = − − − − −      
                  (28) 

And, 

 

( )
( ) ( )

( )  ( ) 
1 1

1!
1 exp 1 exp 1

1 ! !

r n r

r

n
f x x x x

r n r

    
− − +

−    = − − − − −
   − −

           (29) 

 

4.3. Bonferroni and Lorenz Curves 

 

The Bonferroni and Lorenz curves are used in economics, reliability, demography, insurance, 

and medicine. These curves have been used in a variety of other fields in addition to economics, 

where they have typically been used to analyze poverty and income distribution. The 

Bonferroni and Lorenz curves are defined as  

 

( ) ( )
0

1
q

B p xf x dx
p

=       (30) 

 

( ) ( )
0

1
q

L p xf x dx


=        (31) 

Where      
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    ( )E X =  and ( )1q F p−=                (32) 

 

The Bonferroni and Lorenz curves for IUGD are as follows. 

 

( )

1
1 ,

1
1

1
1 ,

q

B p
p







 
+ 

 = −
 

+ 
 

                                                   (33) 

And,  

( )

1
1 ,

1
1

1 ,

q

L p







+

= −

+

                                                      (34) 

 

5. Estimation and inference  

 

This section introduces a few traditional methods for estimating the IUGD's parameters. In this 

study, five estimation methods are examined. The definitions of the functions that need to be 

optimized and the specific estimation context are explained below. 

 

5.1.  Maximum Likelihood Estimation (MLE) 

 

Let ( )1 2, ,..., nx x x x=  denote an unknown parameter vector ( ),  =  representing a random 

sample of size n taken from the IUGD. The likelihood function for θ is expressed as follows: 

 

( ) ( )1

1

| exp 1
n

n n

i i

i

L x x x    −

=

 = − −
      (35) 

So, the log-likelihood function can be written as: 

 

( ) ( )
1 1

| log log 1 log
n n

i i

i i

l x n n x x n     
= =

= + + − − +                        (36) 

 

The score vector U  is obtained by taking the partial derivatives of the log-likelihood function 

with respect to and  , whose components are as follows. 

 

1

1
1

n

i

i

U n x


 =

 
= + − 

 
      (37) 

And, 
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1 1

log log
n n

i i i

i i

n
U x x x

 
 = =

= + −      (38) 

 

The equations 0U U = = are simultaneously solved to get the maximum likelihood 

estimates, written as ( )ˆ ˆˆ,  =  for the parameter vector ( ),  = . We can see that the 

following procedures can be used to find the maximum likelihood estimator for : 

 

1

ˆ
n

i

i

n

x n



=

=

−
      (39) 

 

The second derivatives of the log-likelihood function with regard to the unknown parameters 

are represented by the Hessian matrix, which is given by: 

 

( )

2
1

2

2
1 1

log

log log

n

i i

i

n n

i i i i

i i

n
x x

H
n

x x x x



 






=

= =

 
− − 

 =
 
− − − 
 



 

    (40) 

 

As a result, by using the negative expectation of the Hessian matrix, the expected Fisher 

information matrix may be calculated. 

 

5.2. Anderson–Darling estimation 

 

The study considered a series of values ( ) ( )1
,...,

n
x x  from a random variable that follows the 

Independent and Identically Distributed IUGD pattern. The Anderson-Darling (AD) estimation 

method is then used to estimate the parameters, which is accomplished by minimising the 

subsequent function: 

 

( ) ( )( )  ( )( ) 
1

1
2 1 log 1 exp 1 1

n

i i
i

A n i x x
n

  
=

 = − − − − − − − −
             (41)          

 

5.3. Cramér–Von Mises Estimation (CVM) 

 

The CVM method is used to approximate the values of parameters by minimizing the resulting 

function. 

( )( ) ( )( ) 
2 2

1 1

1 2 1 1 2 1
1 exp 1

12 2 12 2

n n

i i
i i

i i
C F x x

n n n n


= =

− −   
= + − = + − − − −   

   
   (42) 
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5.4. Least-Squares Estimation (LSE) 

 

The LSE is used to create an approximation for the values of the parameters: 

 

( )( ) ( )( ) 
2 2

1 1

1 exp 1
1 1

n n

i i
i i

i i
V F x x

n n


= =

   
= − = − − − −   + +   
     (43) 

 

5.5. Weighted Least-Squares Estimation (WLSE) 

 

It involves minimising the following function, is used to determine the values of parameters:

 

( ) ( )

( ) ( )( ) 
2 2

1

1 2
1 exp 1

1 1

n

i
i

n n i
W x

i n i n


=

+ +  
= − − − − − + + 
   (44) 

 

6. Simulation study  

 

In this section, Monte Carlo simulation study is conducted to determine the performance of the 

proposed estimation methods for IUGD. A sample of sizes 20, 50, 100 and 300 has been taken 

from 10,000 size from IUGD for different parameter settings. Average biases, biases, Mean 

Square Errors (MSE) and Mean Relative Estimates (MRE) are calculated. 

 

Table-1: Average biases, biases, MSE and MRE for MLE, AD, CVM, OLS and WLS 

Methods 
𝛼 = 1.7 𝛽 = 1.6 

20 50 100 300 20 50 100 300 

MLE 

Average Biase 0.2204 0.2386 0.2468 0.2541 5.6684 5.2334 5.0754 4.9525 

Bias 1.4797 1.4614 1.4532 1.4459 4.0684 3.6334 3.4754 3.3525 

MSE 2.1937 2.1376 2.1130 2.0912 18.0524 13.6876 12.3057 11.3114 

MRE 0.8704 0.8596 0.8548 0.8506 2.5427 2.2709 2.1721 2.0953 

AD 

Average Biase 0.1959 0.1933 0.1934 0.1940 5.9876 5.9836 5.9581 5.9065 

Bias 1.5042 1.5068 1.5066 1.5060 4.3876 4.3836 4.3581 4.3065 

MSE 2.2651 2.2714 2.2704 2.2684 20.4546 19.6407 19.2086 18.6288 

MRE 0.8848 0.8863 0.8862 0.8859 2.7422 2.7398 2.7238 2.6916 

CVM 

Average Biase 0.1511 0.1592 0.1610 0.1628 7.6622 7.2422 7.0834 6.9906 

Bias 1.5489 1.5408 1.5390 1.5372 6.0622 5.6422 5.4834 5.3906 

MSE 2.4010 2.3749 2.3691 2.3631 40.4417 33.0048 30.5868 29.2048 

MRE 0.9111 0.9064 0.9053 0.9042 3.7888 3.5264 3.4271 3.3691 

OLS 

Average Biase 0.1691 0.1677 0.1653 0.1647 7.2186 6.9556 6.9886 6.9454 

Bias 1.5309 1.5323 1.5347 1.5353 5.6186 5.3556 5.3886 5.3454 

MSE 2.3459 2.3487 2.3557 2.3573 34.9889 29.6281 29.4835 28.7248 

MRE 0.9005 0.9014 0.9028 0.9031 3.5116 3.3473 3.3679 3.3409 

WLS 

Average Biase 0.1347 0.1159 0.1058 0.0928 7.7191 8.1148 8.4194 8.8496 

Bias 1.5653 1.5841 1.5942 1.6072 6.1191 6.5148 6.8194 7.2496 

MSE 2.4513 2.5095 2.5417 2.5832 40.7508 43.8046 47.2925 52.8292 

MRE 0.9208 0.9318 0.9378 0.9454 3.8244 4.0718 4.2621 4.5310 
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From Table-1, it is observed that as sample size increases the MSE decreases for all estimation 

methods and overall MSE performs better for small, medium and large samples as compared 

to other methods. 

 

From Table-2, it is perceived that as sample size increases the MSE decreases for all estimation 

methods and overall WLS performs better, secondly OLS and thirdly CVM perform better as 

compared to other methods in the case of small samples. In contrast, for medium and large 

samples MLE perform better than others.  

 

Table-2: Average biases, biases, MSE and MRE for MLE, AD, CVM, OLS and WLS 

Methods 
𝛼 = 2.0 𝛽 = 2.5 

20 50 100 300 20 50 100 300 

MLE 

Average Biase 0.2086 0.2314 0.2391 0.2461 9.3950 8.4579 8.1944 7.9761 

Bias 1.7914 1.7686 1.7609 1.7539 6.8950 5.9579 5.6944 5.4761 

MSE 3.2127 3.1300 3.1017 3.0766 52.1271 37.0366 33.1625 30.2352 

MRE 0.8957 0.8843 0.8804 0.8769 2.7580 2.3832 2.2778 2.1905 

AD 

Average Biase 0.2013 0.2031 0.2005 0.2022 9.7358 9.5612 9.5515 9.4215 

Bias 1.7987 1.7969 1.7995 1.7978 7.2358 7.0612 7.0515 6.9215 

MSE 3.2381 3.2300 3.2390 3.2324 56.0717 51.1504 50.4173 48.2058 

MRE 0.8993 0.8985 0.8998 0.8989 2.8943 2.8245 2.8206 2.7686 

CVM 

Average Biase 0.1541 0.1638 0.1660 0.1666 12.6302 11.9646 11.6837 11.5129 

Bias 0.1638 11.9646 1.8362 9.4646 3.3724 93.2177 0.9181 3.7858 

MSE 0.1660 11.6837 1.8340 9.1837 3.3638 85.9385 0.9170 3.6735 

MRE 0.1666 11.5129 1.8334 9.0129 3.3615 81.6857 0.9167 3.6052 

OLS 

Average Biase 0.1748 11.7940 1.8252 9.2940 3.3334 96.7782 0.9126 3.7176 

Bias 0.1693 11.6050 1.8307 9.1050 3.3524 86.2471 0.9154 3.6420 

MSE 0.1682 11.5104 1.8318 9.0104 3.3560 82.6095 0.9159 3.6042 

MRE 0.1681 11.4773 1.8319 8.9773 3.3561 81.1134 0.9160 3.5909 

WLS 

Average Biase 0.1359 13.1079 1.8641 10.6079 3.4759 125.0550 0.9321 4.2432 

Bias 0.1164 13.6394 1.8836 11.1394 3.5482 128.9470 0.9418 4.4558 

MSE 0.1072 14.1207 1.8928 11.6207 3.5830 137.9445 0.9464 4.6483 

MRE 0.0945 14.9570 1.9055 12.4570 3.6312 156.3502 0.9528 4.9828 
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From Table-3, it is seen that as sample size increases MSE decreases for all estimation methods 

and overall WLS performs better, secondly CVM, thirdly OLS, perform better as compared to 

other methods in case of small samples. In contrast, for medium and large samples MLE 

perform better than others. 

 

Table-3: Average biases, biases, MSE and MRE for MLE, AD, CVM, OLS and WLS 

Methods 
𝛼 = 2.5 𝛽 = 3.2 

20 50 100 300 20 50 100 300 

MLE 

Average Biase 0.2140 13.3902 2.2860 10.1902 5.2298 116.7323 0.9144 3.1844 

Bias 0.2353 12.0909 2.2647 8.8909 5.1311 82.7379 0.9059 2.7784 

MSE 0.2429 11.6641 2.2571 8.4641 5.0956 73.2132 0.9028 2.6450 

MRE 0.2509 11.3702 2.2491 8.1702 5.0588 67.3544 0.8996 2.5532 

AD 

Average Biase 0.2129 13.8791 2.2871 10.6791 5.2339 124.5790 0.9148 3.3372 

Bias 0.2112 13.6428 2.2888 10.4428 5.2401 112.5336 0.9155 3.2634 

MSE 0.2133 13.4095 2.2867 10.2095 5.2298 105.9245 0.9147 3.1905 

MRE 0.2166 13.2530 2.2835 10.0530 5.2146 101.8686 0.9134 3.1416 

CVM 

Average Biase 0.1629 18.3168 2.3371 15.1168 5.4640 256.6336 0.9348 4.7240 

Bias 0.1674 17.5347 2.3326 14.3347 5.4419 213.9436 0.9330 4.4796 

MSE 0.1685 17.1659 2.3315 13.9659 5.4362 198.8991 0.9326 4.3644 

MRE 0.1707 16.9683 2.3293 13.7683 5.4257 190.6353 0.9317 4.3026 

OLS 

Average Biase 0.1773 17.4904 2.3227 14.2904 5.3972 232.6027 0.9291 4.4658 

Bias 0.1735 16.9862 2.3265 13.7862 5.4134 197.6054 0.9306 4.3082 

MSE 0.1729 16.8772 2.3271 13.6772 5.4158 190.8747 0.9308 4.2741 

MRE 0.1716 16.9039 2.3284 13.7039 5.4215 189.0377 0.9314 4.2825 

WLS 

Average Biase 0.1379 19.2586 2.3621 16.0586 5.5806 287.3942 0.9448 5.0183 

Bias 0.1191 20.4735 2.3809 17.2735 5.6690 313.1634 0.9524 5.3980 

MSE 0.1087 21.1288 2.3913 17.9288 5.7186 327.7778 0.9565 5.6028 

MRE 0.0951 22.4446 2.4049 19.2446 5.7835 373.1116 0.9620 6.0139 

 

From Table-4, it is determined that as sample size increases the MSE is decreases for all 

estimation methods and overall WLS performs better, secondly CVM, thirdly OLS, fourthly 

AD perform better as compared to MLE methods in case of small samples. In contrast, for 

medium and large samples MLE performs better than others. 
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Table-4: Average biases, biases, MSE and MRE for MLE, AD, CVM, OLS and WLS 

Methods 
𝛼 = 3.7 𝛽 = 2.8 

20 50 100 300 20 50 100 300 

MLE 

Average Biase 0.2258 15.2069 3.4742 12.4069 12.0747 172.5161 0.9390 4.4311 

Bias 0.2521 13.5888 3.4479 10.7888 11.8902 121.8663 0.9319 3.8532 

MSE 0.2592 13.0755 3.4408 10.2755 11.8406 108.6256 0.9299 3.6698 

MRE 0.2715 12.4892 3.4285 9.6892 11.7555 94.8371 0.9266 3.4604 

AD 

Average Biase 0.2201 16.1364 3.4799 13.3364 12.1130 193.7817 0.9405 4.7630 

Bias 0.2250 15.5248 3.4750 12.7248 12.0773 167.4148 0.9392 4.5446 

MSE 0.2291 15.2325 3.4709 12.4325 12.0481 157.2098 0.9381 4.4402 

MRE 0.2359 14.7810 3.4641 11.9810 12.0010 145.1179 0.9363 4.2789 

CVM 

Average Biase 0.1659 22.7166 3.5342 19.9166 12.4922 446.3039 0.9552 7.1131 

Bias 0.1741 20.9032 3.5259 18.1032 12.4330 341.4767 0.9530 6.4654 

MSE 0.1753 20.4110 3.5247 17.6110 12.4238 316.9460 0.9526 6.2896 

MRE 0.1763 20.2722 3.5237 17.4722 12.4168 307.2560 0.9524 6.2401 

OLS 

Average Biase 0.1845 20.3908 3.5155 17.5908 12.3610 348.7379 0.9501 6.2824 

Bias 0.1815 20.0467 3.5186 17.2467 12.3810 310.3754 0.9510 6.1595 

MSE 0.1792 20.1288 3.5208 17.3288 12.3967 306.3855 0.9516 6.1889 

MRE 0.1784 20.0706 3.5216 17.2706 12.4016 300.3531 0.9518 6.1681 

WLS 

Average Biase 0.1419 23.5610 3.5582 20.7610 12.6616 483.6908 0.9617 7.4146 

Bias 0.1213 24.7377 3.5787 21.9377 12.8073 504.6956 0.9672 7.8349 

MSE 0.1103 25.6862 3.5897 22.8862 12.8859 535.5336 0.9702 8.1736 

MRE 0.0965 27.2586 3.6035 24.4586 12.9852 602.4628 0.9739 8.7352 

 

7. Applications  

 

The use of actual data studies in this section illustrates the IUGD's applicability. The P, 

Exponential, T, Lindley, Inverse Lindley, and Inverse Rayleigh distributions are used to make 

comparison easier. This involves supplying information about the related Probability Density 

Functions (PDFs) and the parameters that go along with them. Using the Maximum Likelihood 

Estimation (MLE) approach, these parameters with Standard Errors (SE) are estimated. After 

obtaining the parameter estimations, the model's fit is evaluated using several informational 

criteria and statistical tests. These measurements and tests aid in determining the goodness of 

fit and shed light on the model's suitability.  
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Data I:  

 

The first dataset comprises COVID-19-related death rates observed in the Netherlands between 

March 31, 2020, and April 30, 2020. These percentages represent the number of fatalities 

brought on by the virus at that time.  

 

The data are given as follows:  

 

14.918, 10.656, 12.274, 10.289, 10.832, 7.099, 5.928, 13.211, 7.968, 7.584, 5.555, 6.027, 

4.097, 3.611, 4.960, 7.498, 6.940, 5.307, 5.048, 2.857, 2.254, 5.431, 4.462, 3.883, 3.461, 3.647, 

1.974, 1.273, 1.416, 4.235.  

 

The dataset’s descriptive statistics are generated by the calculations listed below. 

 

The table-5 describes the descriptive statistics for the first dataset comprised of the COVID-

19-related death rates that were observed in the Netherlands between March 31, 2020, and 

April 30, 2020. These are the percentages of the number of fatalities brought on by the virus at 

that time.  

 

Table 5: Summary statistics 

Minimum Median Mean Maximum Skewness Kurtosis 

1.273 5.369 6.157 14.918 0.879 0.175 

 

Table-6: The PDFs for the distributions under discussion 

Distribution PDF Support 
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Table-7 gives the modelling of the proposed density on COVID-19 data, and the values shows 

that the proposed density is more efficient and applicable. 

 

Table-7: The goodness-of-fit results for the first dataset 

 IUGD P Exponential T Lindley 
Inverse 

Lindley 

Inverse 

Rayleigh 

l̂  -76.1031 -94.3841 -84.5253 -79.5285 -79.9640 -85.2373 -83.2789 

AIC 156.2061 190.7682 171.0505 161.0571 161.9281 172.4747 168.5577 

BIC 159.0085 192.1694 172.4517 162.4583 163.3292 173.8759 169.9589 

CAIC 156.6506 190.9111 171.1934 161.1999 162.0709 172.6175 168.7006 

HQIC 157.1026 191.2165 171.4988 161.5053 162.3763 172.9229 169.0060 

K-S 0.0821 0.3627 0.2634 0.2203 0.1794 0.2428 0.2178 

K-S p-

value 
0.9773 0.0005 0.0252 0.0929 0.2569 0.0483 0.0994 

   0.0382 0.6071 6.1565 0.1462 0.2885 4.9595 11.8488 

SE of 

  
0.0261 0.1108 1.1240 0.0101 0.0377 0.7919 2.1633 

   1.7194 --- --- --- --- --- --- 

SE of 

  
0.2955 --- --- --- --- --- --- 

 

Data II:  

 

This dataset displays the lengths of pain relief that 20 individuals who received analgesics 

experienced. The following information is provided: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 

2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0. The following calculations result in the dataset's 

descriptive statistics. 

 

Table-8 provides the descriptive statistics for the dataset and displays the lengths of pain relief 

that 20 individuals who received analgesics experienced. 

 

Table-8: Summary statistics 

Minimum Median Mean Maximum Skewness Kurtosis 

1.1 1.7 1.9 4.1 1.862 4.185 

 

Table-9 depicts the modelling of the proposed density on the relief time data and shows that 

the IUGD is flexible over health-related data sets. It is clear from the results in Table-7 and 

Table-9, that the new distribution performs better than the others, making it ideal for modelling 

datasets related to health.  
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Table-9: The goodness-of-fit results for the second dataset 

 
IUGD P Exponential T Lindley 

Inverse 

Lindley 

Inverse 

Rayleigh 

l̂  -

16.8416 

-

21.2071 
-32.8371 

-

21.8751 

-

30.2495 
-31.7572 -21.1825 

AIC 37.6833 44.4143 67.6742 45.7501 62.4991 65.5144 44.3650 

BIC 39.6747 45.4100 68.6699 46.7459 63.4948 66.5101 45.3607 

CAIC 38.3891 44.6365 67.8964 45.9724 62.7213 65.7366 44.5872 

HQIC 38.0720 44.6087 67.8685 45.9445 62.6935 65.7088 44.5594 

K-S 0.1277 0.2850 0.4395 0.1921 0.3911 0.3695 0.2566 

K-S p-

value 
0.9001 0.0775 0.0009 0.4516 0.0044 0.0085 0.1436 

   0.3647 1.6971 1.9000 0.5356 0.8161 2.2547 2.7607 

SE of 

  
0.2575 0.3795 0.4249 0.0453 0.1361 0.4089 0.6173 

   1.8950 --- --- --- --- --- --- 

SE of 

  
0.5997 --- --- --- --- --- --- 

 

Figure 3 given below, shows the fitting of the IUGD to the probability-probability (P-P) plots, 

showing its appropriateness for both datasets, further supporting the suitability of the novel 

distribution. 

 

Figure 3: PP Plots (a) Data I and (b) Data II 

 

8. Conclusion 

 

In this research paper, a two-parameter distribution named Inverse Unit Gompertz Distribution 

(IUGD) is proposed as an alternative to the P, Exponential, T, Lindley, Inverse Lindley and 

Inverse Rayleigh distributions. The support for this newly proposed distribution extends from 

1 to positive infinity. The construction of this distribution involved utilizing the Unit Gompertz 

distribution, which served as the standard distribution, and applying the inverse of random 

variable transformation. The analysis conducted confirmed that the probability density function 

(PDF) of the new distribution exhibits unimodal behaviour, and the Hazard Rate Function 
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(HRF) demonstrates either increasing, decreasing or constant characteristics. Mathematical 

properties, such as moments, quantile function, median, mode, order statistics, Bonferroni, and 

Lorenz curves are thoroughly investigated. The Lorenz and Bonferroni curves can be used to 

see the wealth condition of a nation. The reliability measures for the IUGS are derived which 

are helpful to conduct the life data analysis. A few estimation methods are discussed to estimate 

the parameters for the IUGD, and a simulation study is conducted for small, medium, and large 

samples taken from 10,000 sizes. From the simulation study, it was observed that for small 

samples, the MLE does not perform well. Instead, WLS and CVM are better, while for the 

large samples MLE performs best as compared to others. The practical performance of the 

Inverse Unit Gompertz Distribution (IUGD) is demonstrated through the analysis of the real-

life dataset. The IUGD outperforms the competing distributions such as P, Exponential, T, 

Lindley, Inverse Lindley, and Inverse Rayleigh distributions, according to several criteria and 

goodness-of-fit tests. The outcomes of these analyses show that the IUGD is a highly 

advantageous and effective option for modelling and analyzing datasets. Finally, the proposed 

density is helpful for the lifetime data sets (living and non-living objects). Therefore, by using 

the proposed model on a lifetime of products, the performance of the products can be improved, 

and necessary repairs can be made; for the lifetime of living objects, proper medication can be 

done, and treatment ways can be improved.  
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