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Abstract: This paper estimates the parameters of the 3-component mixture 

of power distributions. The expressions of fundamental properties of the 

said distribution are presented, and for judgment, the numerical results of 

mean, median, variance, mode and skewness are evaluated. The closed-

form expressions of the reliability properties, the statistical properties and 

necessary inequality measures are discussed. The trend of reliability 

measures is shown with the help of numerical results and graphs by taking 

different values of parameters and proportion parameters. The mathematical 

expressions of certain related statistical functions are derived from the 

reliability functions, the moment generating function, the characteristics 

function, the probability generating function, and the factorial moment 

generating function. The expressions of essential entropies, Shannon’s 

entropy,  the 𝛽 -entropy and Renyi’s entropy, are derived. The mathematical 

expressions of inequality indexes, the Gini index, the Lorenz curve, the 

Bonferroni curve, the Zinga index, the Atkinson index and the generalized 

entropy index are also analysed. The RF, the HRF, the CHR, the RHR, the 

MRL, and the MWT functions are derived in reliability analysis. The 

numerical values and graphs for different parameters and proportion 

components are discussed to judge the behaviour of reliability properties. 
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1. Introduction 

 

A mixture distribution arises naturally when a statistical population includes several 

subpopulations. This classification has gained considerable interest in a variety of applications, 

particularly in the field of performance improvement and reliability studies. A mixture 

distribution involves a combination of probability distributions, each representing a 

subpopulation, with a corresponding weight called the mixture weight. If population sizes are 

unknown, the standard distribution may not apply, making finite mixture models with 

appropriate probability distributions necessary e.g., electrical component or chemical 

concentrations may be subpopulations defined by failures. The hybrid distribution can be either 

discrete or continuous depending on the number of parents and is useful when multiple 

scenarios are possible but lack context-specific information. 

 

When the data from individual component densities or the conditional distributions are not 

available, but these were available from an overall mixture distribution then the necessary use 

becomes the finite mixture model. When the mixture data is modelled of some of the element 

distributions then mixture models of straight application is obtained.  Otherwise, it is said to be 

an indirect application, for example, the cluster analysis, the kernel-based density estimation 

and the modelling prior densities.  Mostly, in the biology the direct applications of the mixture 

models are discussed by (Bhattacharya, 1967) and by (Gregor, 1969), in the medicine are 

presented by (Chivers, 1977) and by (Burckhardt, 1978), in the social sciences are observed by 

Harris in 1983, in an economics are mentioned by (Jedidi et al., 1997), in the reliability and 

survival are  analysed by (Sultan et al., 2007), in the life testing are suggested by Shawky and 

(Shawky & Bakoban, 2009),  in the industrial engineering are observed by (Ali et al., 2012), 

etc. In the recent years, there are various applied fields in which a mixture representation has 

been recycled is still spreading are due to a rapid growth of the powerful computational 

techniques. It is clear in many applications; that the available data comes from a mixture of 

more than two distributions. Then these applications enable us to combination the statistical 

allocations for getting a new mixture distribution. To study a population some of an appropriate 

probability distribution is proposed in a mixture that is imaginary to depends on several 

subpopulations which mixed in the unknown proportions. 

 

In practical situations, a finite population of mixtures has determined the distribution of 

components, allowing focus on mixture theory. Sometimes component distributions are known 

with unknown parameters, while mixing ratios are determined. This thesis examines classical 

research on 3-component mixtures of Power distributions, focusing on unknown parameters 

and proportions under the Type-I mixture model. 

 

If X has the following density function can be written in the form 𝑓(𝑥) = ∑ 𝑤𝑖
𝑘
𝑖=1 𝑓𝑖(𝑥), where 

𝑤𝑖 (𝑖 = 1, 2,..., K) is 𝑖th mixing proportions such that 𝑤𝑘 = 1 − ∑ 𝑤𝑖
𝑘−1
𝑖=1  and 𝑓𝑖(𝑥) is 𝑖th 

component density function then X random variable is supposed a finite mixture of distribution 

to follow with a k components. With unknown mixing proportions 𝑤1 and 𝑤2, the Probability 

Density Function (PDF) and Cumulative distribution function (cdf) of the finite three-

component mixture of distribution is defined by the (Barger et al., 2006) and by (Stehlík et al., 

2012) as: 

 

𝑓(𝑥; Ψ) = 𝑤1𝑓1(𝑥; β1) + 𝑤2𝑓2(𝑥; β2) + (1 − 𝑤1 − 𝑤2)𝑓3(𝑥; β3),      0 < 𝑥 < 1                (1) 

 

𝐹(𝑥; Ψ) = 𝑤1𝐹1(𝑥; β1) + 𝑤2𝐹2(𝑥; β2) + (1 − 𝑤1 − 𝑤2)𝐹3(𝑥; β3)                (2) 
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Where  𝑤𝑖 ≥ 0, ∑ 𝑤𝑖
2
𝑖=1 ≤ 1, Ψ = (β1, β2, β3 , 𝑤1 , 𝑤2) and, 𝑓𝑖(𝑥; Ψi), 𝑖 = 1, 2, 3 is the PDF of 

the 𝑖th component. 

 

Modern data analysis uses various types of data, such as simple data, aggregate data, censored 

data, progressively censored data, and value data. Censorship is a common problem in life 

sciences, which occurs when only part of the information about the source of information is 

known. Censorship is a property of the dataset, not a parameter, and is different from truncation. 

While truncation involves not including data outside of a certain data, in censoring, the value 

must be known after a period of time, but the truth must not be known. The main analysis 

methods are right analysis, left analysis, and periodic analysis. The review policy includes type 

1 and type 2. Type 1 is divided into ordinary type, advanced type and general type. This study 

focuses on the ordinary type I censorship law where the cut-off time is fixed. Previous studies 

have investigated various censoring methods, including (Sindhu et al., 2015) and others. 

 

Reliability analysis is used to measure time-to-failure data with consistent results 

demonstrating reliability under similar conditions. Mixed distributions are popular for 

modelling heterogeneous data. Chen et al. (1985) used a mixed model, first popularized by 

Berkson and Gage (1952), for cancer survival data. Quiang (1994) used a similar model with a 

Weibull component for cancer testing. Rahnama et al. (2006) used a multivariate model for 

cancer progression with significant survival as covariates. Bayesian estimation of exponential 

survival time was not investigated by Abu-Taleb et al. (2007). Erişoğlu et al. (2011) analysed 

the heterogeneity of survival profiles in two distributions. Krishna and Malik (2012) proposed 

reliability estimates for the Maxwell distribution using asymptotic type II censoring, while Ali 

(2014) provided reliable properties for two-point mixtures of Rayleigh returns. 

 

The primary objective of this study is the classical estimation of a three-component mixture of 

Power distributions. Additionally, the study aims to conduct a comprehensive reliability 

analysis of these mixtures. Other key objectives include developing the analytical form of the 

three-component mixture of power distributions, deriving the basic statistical properties, and 

obtaining closed-form mathematical expressions for various functions related to reliability 

analysis. The study also seeks to establish algebraic expressions for the entropies of the three-

component mixture and to determine the expressions for various inequality measures 

associated with these distributions. 

 

2. Literature of review 

 

Ali et al. (2005) discussed the characterization of Power distribution. They worked on the 

record statistics of the mixture of two-exponential distributions by estimating the parameters. 

ML and Bayes methods of estimation are used for estimating parameters. In 1980, Lindley used 

the approximation form to obtain Bayes estimators for parameters of mixture model. By using 

Monte Carlo simulation method, Bayes estimates results are compared with estimates obtained 

by the method of ML. 

 

Soliman et al. (2010) focused on Bayesian analysis of a mixture of power functions by 

comparing Bayesian and non-Bayesian estimation methods for unknown parameters based on 

lower cost. They produce Bayesian estimates in zero-sum squared error loss derived using prior 

data. This work also presents Bayesian time estimation and time estimation exemplified by 

valid models. 
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Afify (2011) introduced the compound Rayleigh distribution and derived ML estimates of its 

parameters, including the asymptotic variance-covariance matrix. This study addresses the 

problem of estimation under type 1 asymptotic censoring and tests the new estimates with 

numerical examples. A Monte Carlo simulation study investigated the accuracy of the ML 

estimator and the iteration process. 

 

Tahir et al. (2016) the study examined factors, and parameter estimates of three-factor mixtures 

of exponential distributions (3-CMED) using the maximum likelihood (ML) method and 

discusses the main properties of statistical reliability, entropy measures, dissimilarity indices, 

and order statistics. Parameter estimates are performed through ML, using both censored and 

fully censored sampling, validated by simulation studies on real-life data. 

 

Aslam et al. (2018) developed the reliability analysis of 3-CMED, 3-CMRD, 3CMBD and 3-

CMPD. The problems of evaluating different survival time properties of 3-CMED, Rayleigh, 

Pareto and Burr distributions are developed. For these 3-CMD, the CDF, HRF, MRL, MWT 

functions and numerical results are derived for fixed standards of factors.  

 
Kulagina (2022) used Mixture models in various applications such as clustering, random 

effects modelling, and divergence, modelling heterogeneous populations that are homogeneous 

subpopulations Estimating the number of factors in a mixture model is a challenging task. 

Methods such as Hankel-matrix methods, minimum distance estimation, and likelihood ratio 

tests, all with consistency guarantees, provide promising but infallible solutions, with useful 

implications for specific data situations. 
 

Hou et al. (2023) overhead power distribution infrastructure is vulnerable to ice storms, causing 

significant economic losses each year. Climate change and aging infrastructure are increasing 

the need for resilient systems. This paper presents a possible framework for assessing the 

resilience of power distribution systems to ice storms, focusing on a simple model of the 

components involved and testing mechanisms such as tree height and vegetation management 

research. 

 

According to Dey et al (2023), the research gap in this study lies in the limited exploration of 

alternative parameter estimation methods beyond Maximum Likelihood (ML), particularly 

under censored data conditions. While the paper focuses on ML estimators, their limitations in 

handling complex data structures, especially with censoring, are not fully addressed. 

Additionally, the study does not compare ML with other estimation techniques such as 

Bayesian methods or robust estimation, which could provide deeper insights into improving 

the accuracy and reliability of parameter estimation. Further investigation into these methods, 

especially in the context of order statistics and mixture distributions, is warranted to address 

this gap. 

 

Although the ability of hybrid models to handle heterogeneous lifetime scenarios has been 

studied, there are few studies on the application of these models to generalized Rayleigh 

distributions, especially classical and Under Bayesian methods. This paper addresses the gap 

by introducing a more flexible hybrid Rayleigh distribution, capable of handling complex 

lifetime scenarios with different failure rate behaviours Both frequentist and Bayesian 

approaches are used for parameter estimation further extends the analysis, but comparative 

studies of these methods have been well studied. 
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3. Methodology 

 

3.1. Power distribution 

 

Analysis is important in life cycle data analysis because it is often impractical to track the entire 

duration of each activity in the data set. Censoring occurs when at least one product only 

partially represents the time to failure and can be divided into right censoring, left censoring, 

and time censoring. Right censoring can be Type I or Type II, depending on the number of 

failures or whether time is constant. A combination of probabilities is used to examine 

populations by group. As discussed, for example, by Davis (1952) and Epstein and Sobel, 

(1953), the life of electrical equipment can vary for many reasons. Bayesian analysis of the 

power function distribution, as investigated by (Meniconi & Barry, 1996), is still limited in the 

literature. For various values of the component parameters the behaviour of the power 

distribution is shown in Figure 1.   

 
Figure 1: Graph of PDF of power distribution for parameters (𝛽1, 𝛽2,𝛽3) = (0.5, 1, 2) 

 
 

The uses of power distribution are as follows: 

 

• In communications theory power distribution is used, to describe the several paths of 

the scattered dense signals which reached the receiver. 

• In physical sciences power distribution is used to observe the speed of wind, sound or 

light radiation and the wave heights. 

• In an engineering, Power distribution is used, to note down an object’s lifetime, where 

the object’s lifetime based on the age of an object: e.g.: the resistors, the transformers, 

and the capacitors in sets of an aircraft radar. 

• In medical imaging science power distribution is used, to demonstrate the noise 

variation in the imaging of magnetic resonance. 

 

3.2. Statistical properties 

 

Some of the basic properties of a statistical distribution are given below: 
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3.2.1. Mean and variance 

 

Mean and variance refers to the measures of location and the measure of variation, 

respectively, moreover of a probability distribution or of a random variable considered by that 

distribution.  

 

Mean and variance for a X r.v. is defined as: 

 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
1

0
                                 (3) 

  

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − {𝐸(𝑋)}2                                (4) 

 

3.2.2. 𝒓th moments about origin 

 

The set of parameters that review it known as the moments of a distribution. In other words, 

the factors (constants) of a population to finding the mean, variance etc. are called the moments. 

The population characteristics are decided with the help of these factors and discussion of a 

population is based on these characteristics. The arithmetic mean, variance and standard 

deviation are obtained directly from moments. Moments are applicable in finding the 

dispersion, the averages, the kurtosis and skewness of a distribution.  

 

The 𝑟th moment about origin of X r.v. is given in Equation (5) as: 

 

 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
1

0
.                                (5) 

 

The 𝑟th moments of origin are also known as the raw moments. 

 

3.2.3. 𝒉th order negative moments 

 

The ℎ
th

 order -ve moments for a random variable X are calculated by interchanging 𝑟 with (−ℎ) 

in Equation (5) as: 

 

 𝐸(𝑋−ℎ) = ∫ 𝑥−ℎ𝑓(𝑥)𝑑𝑥
1

0
.                     (6) 

 

3.2.4. Factorial moments 

 

The factorial moments are a quantity of mathematics which  defined as: The average of 

the dropping factorial of an arbitrary variable. To study the integer of non-negative random 

variables the Factorial moments are used, and these are also used for the derivation of random 

variables which are discrete in the probability generating functions it arises.  

 

The factorial moments for a X random variable are derived by this relation as follows: 

 

 𝐸(𝑋(𝑋 − 1)(𝑋 − 2) … (𝑋 − 𝛼 + 1)) = ∑ 𝜉𝑢(−1)𝑢𝐸(𝑋𝛼−𝑢)𝛼−1
𝑢=0 ,                (7) 

  

Where “𝜉𝑢
′ 𝑠” are the non-null real numbers. 

  

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Falling_factorial
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability-generating_function
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The 𝐸(𝑋𝛼−𝜇) can be obtained by replacing 𝑟 with (𝛼 − 𝜇) in Equation (5) as: 

  

𝐸(𝑋𝛼−𝜇) = ∫ 𝑥𝛼−𝜇𝑓(𝑥)𝑑𝑥
1

0
                                (8) 

 

3.2.5. Quantile function 

 

The quantile function requires, the rate at which a probability of arbitrary variable is fewer than 

or equivalent to the assumed probability, for the assumed probability in a probability 

distribution of an arbitrary variable. The quantile function is also known as the function of 

percent point or a function of an inverse cumulative distribution. For the value of 𝑥 the function 

of quantile 𝑄 in positions of a distribution function is as: 

 

 𝐹(𝑥𝑞) = 𝑝.                                             (9) 

 

3.3. Reliability properties 

 

The overall measure of consistency is reliability.  If a measure produces similar results under 

the consistent conditions, then it is viewed that it has a high reliability. From a one testing 

moment to another the highly reliable scores are reproducible, accurate, and consistent.  For 

example, measurements of the height of people's and often the weight is reliable extremely. 

Reliability properties are as follows. 

 

3.3.1. Reliability function / survival function 

 

The probability on which a method, a patient, or further objects of attention will live outside a 

stated time is known as the survival function. Reliability function is another name of survival 

function.  

 

On the interval (0, 1)with CDF 𝐹(𝑡), let 𝑇 be a continuous r.v. then its reliability function for 

a X random variable is as: 

 

 𝑅(𝑡) = 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝑥)𝑑𝑥 = 1 − 𝐹(𝑡)
1

𝑡
                           (10) 

 

3.4. Failure Rate Function (HRF) / hazard rate function 

 

The frequency through which a caused system or the factor fails, stated in a failure per unit of 

time is called a Failure rate. It is used highly in the field of engineering to check reliability and 

it is denoted by a Greek letter 𝜆 (lambda). Usually, the systems failure rate depends on a time, 

which varying upon the systems life cycle with the rate. There are a wide range of applications 

of Failure rates, from these applications it is noted that Failure rates are the important factors 

in the fields of finance, insurance, regulatory industries and in commerce. 

 

The HRF is defined as: 

 

 ℎ(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
=

𝑓(𝑡)

𝑅(𝑡)
.                                          (11) 

 

 Where 𝑇 is the failure time. 

https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Greek_alphabet
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3.5. Cumulative Hazard Rate (CHR) / reversed hazard rate function 

 

The CHR function is not included in a probability as the Hazard rate is. In a series system, the 

Hazard rates have a greater affinity, then for the study of a parallel systems the reversed hazard 

rates looks more appropriate. The function 𝐻(𝑡) is known as an integrated hazard function or 

a Cumulative hazard function. Obviously, also it is known as a measure of a risk. The larger 

value of 𝐻(𝑡) provides the larger value of a risk of failure by a time T. The CHR 𝐻(𝑡)and RHR 

is defined as: 

 

 𝐻(𝑡) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0
= − 𝑙𝑛 𝑅 (𝑡).                             (12) 

 

3.6. Mean Residual Life (MRL) function 

 

The function which measures the predictable lasting lifetime of an individual of age x at a given 

time x is called as MRL. If X is a non-negative random variable which representing a life of 

the component with distribution function 𝐹, then a MRL of variable X is denoted by 𝑀(𝑥) and 

defined as: 

 

 𝑀(𝑥) =
1

𝑅(𝑥)
∫ (𝑦 − 𝑥)𝑓(𝑥)

1

𝑥
𝑑𝑥.                  (13) 

 

3.7. Mean Waiting Time (MWT) function 

 

Another important function is the MWT function, which is also called as the function of an 

expected idleness time. 

MWT of an item failed in an interval (0, x) is defined as: 

 

 𝜔
_

(𝑥) = 𝑥 − {
1

𝐹(𝑥)
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑥

0
}                             (14) 

 

4. Statistical functions 

 

The different statistical functions of a distribution are as: 

 

4.1. Moment Generating Function (MGF)  

 

MGF of real-valued arbitrary variable is an alternate description of its probability distribution. 

Hence, it provides basis of another route to an analytical result which compared along the 

working directly, along with a PDF’s or with the CDF’s. 

 

The MGF for a X r.v. is defined as: 

 

 𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥).                               (15) 

 

4.2. Characteristic Function (CF) 

 

CF fully defines the probability distribution of a r.v. which is real-valued. The CF is the Fourier 

transformation of PDF if a random variable admits a PDF. 

 

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Real-valued
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The CF of a X random variable is calculated by replacing 𝑖𝑡 in place of 𝑡 in Equation (15) as: 

 

 𝜙𝑥(𝑡) = 𝐸(𝑒𝑖𝑡𝑥).                                          (16) 

 

where 𝑖 is an imaginary unit. 

 

4.3. Probability Generating Function (PGF) 

 

An illustration of a power series of the probability mass function of an arbitrary variable is 

known as the PGF. 

 

PGF of a r.v. X is calculated by replacing 𝑙𝑛 𝛼 in place of 𝑡 in Equation (15) as: 

 

 𝐺(𝑧) = 𝐸(𝑧𝑋 𝑙𝑛 𝛼).                               (17) 

 

4.4. Factorial Moment Generating Function (FMGF) 

 

The FMGF of a real-valued r.v. X is calculated by putting 𝑙𝑛(1 + 𝛿) in place of 𝑡 in equation 

(15) as: 

 

 𝑀𝑥(𝑡) = 𝐸(𝑒𝑋 𝑙𝑛(1+𝛿)).                              (18)                                                                                 

 

For all complex numbers 𝑡 for which this expected value exists. 

 

5. Entropies 

 

Generally, entropy refers to a disorder or an improbability. In additional work, the entropy of 

an arbitrary variable X is degree of an indefinite quantity of evidence in a function. Entropies 

are widely used in engineering, in science, in a reliability theory and in a various situation used 

as an uncertainty measure. There are many entropies which have been compared and discussed 

in the literature but, here the expressions of most important entropies which are discussed are 

three as: the Shannon’s entropy, the Re’nyi entropy and the 𝛽 -entropy as: 

 

5.1. Shannon’s entropy 

 

The Shannon entropy was introduced in the paper of 1948 “a mathematical theory of 

communication” by Claude E. Shannon. To measure the heaviness of tails and to compare the 

shapes of the various densities Shannon entropy plays a same role as plays by the measure of 

kurtosis.  

 

The Shannon’s entropy of a X r.v. is defined as: 

 

 𝑄(𝑥) = − ∫ 𝑓(𝑥) 𝑙𝑜𝑔 𝑓 (𝑥)𝑑𝑥
1

0
.                  (19) 

 

5.2 Re’nyi entropy 

 

The Rényi entropy was developed by Alfre’d Re’nyi in 1961. This entropy is very popular in  

https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
https://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
https://en.wikipedia.org/wiki/Claude_E._Shannon
https://en.wikipedia.org/wiki/Alfr%C3%A9d_R%C3%A9nyi
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the ecology and statistics as an index of diversity. However, the Re’nyi entropy is the 

generalization of a Shannon’s entropy. 

 

The Re’nyi entropy for a X r.v. is denoted by𝐿𝑔(𝜐) and defined as: 

 

 𝐿𝑔(𝜐) =
1

(1−𝜐)
𝑙𝑜𝑔 {∫ 𝑓𝜐(𝑥)𝑑𝑥

1

0
}.                                        (20) 

 

Where 𝜐 > 0, and 𝜐 ≠ 1. 

 

5.3. 𝜷 -entropy 

 

Havrda and Charvat introduced the 𝛽 -entropy in 1967 and after that, Tsallis applied it to on 

the physical problems in 1988. Another name of 𝛽 -entropy is known as “Tsallis entropy”. With 

the reference of Ullah (1996) the 𝛽 -entropy is also a monotonic function of the Re’nyi entropy. 

 

For a r,v. X , the 𝛽 -entropy is defined as: 

 

 𝐿𝛽(𝜋) =
1

(𝜋−1)
{1 − ∫ 𝑓𝜋(𝑥)𝑑𝑥

1

0
}.                             (21) 

 

Where 𝜋 > 0, and 𝜋 ≠ 0. 

 

6. Measures of inequality 

 

The inequality of income metrics only has not their uses in poverty and income, also it is 

applicable in the other fields as in demography, in medicine, in an insurance and in a reliability. 

For measuring the income distribution, the social scientists are also used these inequality 

measures and in a specific economy the income inequality between the participants is used, in 

general as in the specific country or in the world.  The most important income inequality 

metrics are as: 

 

6.1. Gini coefficient (index) 

 

The Gini coefficient is a degree of dispersion which denotes the distribution of wealth or 

income of a state's residents. However, it is used most frequently in the measure of inequalities. 

It is also sometimes known as a “Gini coefficient” or a “Gini ratio”. This coefficient developed 

by a sociologist and an Italian statistician “Corrado Gini” and in 1912 he was published in his 

paper “Variability and Mutability”. Gini coefficient for a X r.v. is: 

  

𝐺 =
1

𝐸(𝑋)
∫ 𝐹(𝑥){1 − 𝑓(𝑥)}𝑑

1

0
𝑥.                                        (22) 

 

6.2. Lorenz curve 

 

Graphical depiction of the distribution of wealth or income is known as the Lorenz curve. Max 

O. Lorenz was introduced a Lorenz curve in 1905 for the depiction of the inequality of 

distribution of wealth. 

 

https://en.wikipedia.org/wiki/Diversity_indices
https://en.wikipedia.org/wiki/Statistical_dispersion#Measures_of_statistical_dispersion
https://en.wikipedia.org/wiki/Sociology
https://en.wikipedia.org/wiki/Italians
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Corrado_Gini
https://en.wikipedia.org/wiki/Wealth
https://en.wikipedia.org/wiki/Max_O._Lorenz
https://en.wikipedia.org/wiki/Max_O._Lorenz
https://en.wikipedia.org/wiki/Economic_inequality
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Lorenz curve for a X r.v. is:  𝐿(𝑝) =
1

𝐸(𝑋)
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑥

0
.               (23) 

 

6.3. Bonferroni Curve (BC) 

 

In 1930, Bonferroni was introduced a measure of an inequality of income, which depends on 

the partial means, and is applicable when an important source of an inequality of income is the 

existence of the items when their income is below much than those of others. 

 

BC for a X r.v. is computed by the following relation as: 

   

𝐵𝐶(𝑝) =
𝐿(𝑝)

𝐹(𝑥)
.                               (24) 

 
7. Fundamental properties and MGF of a 3-component mixture of power 

distributions 

 

For an efficient modelling of a given time-to-failure data we plan to have the classical analysis 

of a 3-Component mixture of Power distribution with its different properties under the 

definition of an Equation (1). A finite 3-Component mixture of power distribution with mixing 

proportions𝑤1and𝑤2has the Probability Density Function (PDF) and Cumulative Distribution 

Function (CDF) as: 
  

𝑓(𝑥; Ψ) = 𝑤1𝑓1(𝑥; 𝛽1) + 𝑤2𝑓2(𝑥; 𝛽2) + (1 − 𝑤1 − 𝑤2)𝑓3(𝑥; 𝛽3),               (25) 

 

Where 𝑤1, 𝑤2 ≥0, 𝑤1+𝑤2 ≤1 

         

 𝐹(𝑥; Ψ) = 𝑤1𝐹1(𝑥; 𝛽1) + 𝑤2𝐹2(𝑥; 𝛽2) + (1 − 𝑤1 − 𝑤2)𝐹3(𝑥; 𝛽3),             (26) 

 

Where Ψ = (β1, β2, β3 , 𝑤1 , 𝑤2) 

  

𝑓𝑖(𝑥; βi) = βi𝑥
𝛽𝑖−1,   0 ≤ 𝑥 ≤ 1, 𝛽𝑖 > 0, 𝑖 =  1, 2, 3, 

  

𝑓𝑖(𝑥; Ψ) = w1𝛽1𝑥𝛽1−1 + 𝑤2𝛽2𝑥𝛽2−1 + (1 − 𝑤1 − 𝑤2)𝛽3𝑥𝛽3−1,  
 

Where 0 ≤ 𝑥 ≤ 1, 𝛽𝑖 > 0, 𝑖 = 1,2,3.  

 

The CDF of the 𝑖th component density is given by: 

  

Fi(𝑥; βi) = 1 − 𝑥𝛽𝑖 ,  0 ≤ 𝑥 ≤ 1, 𝛽𝑖 > 0, 𝑖 =  1, 2, 3,                (27) 

 

Fi(𝑥;  Ψ) = 1 − w1𝑥𝛽1 − w2𝑥𝛽2 − (1 − w1 − 𝑤2)𝑥𝛽3  

 

7.1. Statistical properties of the 3-CMPD  

 

Here, we have discussed the computable representations of some statistical properties 

associated with the 3-Component mixture of power distribution having PDF given in Equation 

(26). 
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7.1.1. Mean 

 

Mean of a 3-CMPD are computed as: 

 

 𝐸(𝑋) = 𝑤1 ∫ 𝑥𝑓1(𝑥; 𝛽1)
1

0
𝑑𝑥 + 𝑤2 ∫ 𝑥𝑓2(𝑥; 𝛽2)

1

0
𝑑𝑥 + (1 − 𝑤1 − 𝑤2) ∫ 𝑥

1

0
𝑓3(𝑥; 𝛽3)𝑑  (28) 

 

After explanation, mean of a 3-CMPD becomes: 

 

 𝐸(𝑋) =
𝑤1𝛽1

𝛽1+1
+

𝑤2𝛽2

𝛽2+1
+

(1−𝑤1−𝑤2)𝛽3

𝛽3+1
 .                                        (29) 

 

7.1.2. 𝒓th moments about origin 

 

The 𝑟th moments about origin of a 3-CMPD for a X r.v. are derived as: 

 

𝐸(𝑋𝑟) = 𝑤1 ∫ 𝑥𝑟𝑓1(𝑥; 𝛽1)𝑑𝑥

1

0

+ 𝑤2 ∫ 𝑥𝑟𝑓2(𝑥; 𝛽2)𝑑𝑥

1

0

+ (1 − 𝑤1 − 𝑤2) ∫ 𝑥𝑓3(𝑥𝑟; 𝛽3)𝑑𝑥

1

0

 

 

7.2. Variance 

 

Variance of 3-CMPD is: 

 

 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

 

𝐸(𝑋2) = 𝑤1 ∫ 𝑥2𝑓1(𝑥; 𝛽1)𝑑𝑥
1

0
+ 𝑤2 ∫ 𝑥2𝑓2(𝑥; 𝛽2)𝑑𝑥

1

0
+ (1 − 𝑤1 − 𝑤2)  ∫ 𝑥2𝑓3(𝑥; 𝛽3)𝑑𝑥

1

0
        (30)                                                                 

 

After simplification, the result of Equation (30) becomes as: 

 

 𝐸(𝑋2) =
𝑤1𝛽1

𝛽1+2
+

𝑤2𝛽2

𝛽2+2
+

(1−𝑤1−𝑤2)𝛽3

𝛽3+2
 ,                                         (31)  

                                                                                                                                              

After substituting the values of equations (29) and (31), in (4) the result of variance is as: 

 

𝑉𝑎𝑟(𝑋) =
𝑤1𝛽1

𝛽1+2
+

𝑤2𝛽2

𝛽2+2
+

(1−𝑤1−𝑤2)𝛽3

𝛽3+2
− [

𝑤1𝛽1

𝛽1+1
+

𝑤2𝛽2

𝛽2+1
+

(1−𝑤1−𝑤2)𝛽3

𝛽3+1
]

2

                              (32) 

 

7.3. 𝒉th order negative moments 

 

The ℎthorder negative moments are readily evaluated by replacing 𝑟 with (−ℎ) in equation (30) 

as given below: 

 

 𝐸(𝑋−ℎ) = 𝑤1 ∫ 𝑥−ℎ𝑓1(𝑥; 𝛽1)𝑑𝑥
1

0
+ 𝑤2 ∫ 𝑥−ℎ𝑓2(𝑥; 𝛽2)𝑑𝑥

1

0
+ (1 − 𝑤1 − 𝑤2) , 

 

                  ∫ 𝑥−ℎ𝑓3(𝑥; 𝛽3)𝑑𝑥
1

0
                                        (33) 

 

After simplification, the result of ℎ
𝑡ℎ

order negative moments are as: 
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 𝐸(𝑋−ℎ) =
𝑤1𝛽1

𝛽1−ℎ
 + 

𝑤2𝛽2

𝛽2−ℎ
 + 

(1−𝑤1−𝑤2)𝛽3

𝛽3−ℎ
.                            (34)

  

7.4. Quantile function 

 

The quantile function for a X r.v. is: 

 

 𝑥𝑞= 𝑤1𝑥𝛽1 + 𝑤2𝑥𝛽2 + (1 − 𝑤1 − 𝑤2)𝑥𝛽3.                 (35) 

 

The median 𝑄2 from equation (41) are as: 

 

Median = 𝑤1(0.50)𝛽1 + 𝑤2(0.50)𝛽2 + (1 − 𝑤1 − 𝑤2)(0.50)𝛽3.              (36) 

 

The quartile 𝑄1, 𝑄3and Bowley’s coefficient of skewness from Equation (35) are as: 

  

𝑥0.25 = 𝑄1 = 𝑤1(0.25)𝛽1 + 𝑤2(0.25)𝛽2 + (1 − 𝑤1 − 𝑤2)(0.25)𝛽3.             (37) 

  

𝑥0.75 = 𝑄3 = 𝑤1(0.75)𝛽1 + 𝑤2(0.75)𝛽2 + (1 − 𝑤1 − 𝑤2)(0.75)𝛽3 .             (38) 

 

And 

  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑄3+𝑄1−2𝑄2

𝑄3−𝑄1
 .                   (39) 

 

By putting the results of equations (36), (37) and (38) in (39) the skewness of a 3-component 

mixture of Power distributions can be easily calculated. 

 

Similarly, by using the expression of equations (29), (36), (37) and (39) the numerical results 

of mean, median, mode, variance and skewness of a 3-CMPD are obtained and are presented 

in Table-1. 

 

Table-1: Quantile Function of a 3-Component Mixture of Power Distributions 

𝛽1 , 𝛽2 , 𝛽3 ,  𝑤1,  𝑤2 Mean Variance Median Mode Skewness 

2,3,4,0.1,0.2 

2,3,4,0.2,0.3 

2,3,4,0.3,0.4 

2,3,4,0.4,0.5 

0.776667 

0.758333 

0.74234 

0.721667 

0.0334556 

0.038239 

0.043214 

0.045863 

0.822829 

0.80701 

0.789285 

0.769657 

0.95176 

0.91885 

0.89280 

0.86268 

-0.757145 

-0.746535 

-0.71805 

-0.672257 

4,3,2,0.2,0.1 

5,4,3,0.3,0.2 

6,5,4,0.4,0.3 

7,6,5,0.5,0.4 

0.701667 

0.78512 

0.832857 

0.86369 

0.050997 

0.031391 

0.020634 

0.014356 

0.750502 

0.830462 

0.871803 

0.896984 

0.83907 

0.86759 

0.94142 

0.923345 

-0.648754 

-0.769745 

-0.813368 

-0.833615 

1,2,3,0.4,0.2 

3,2,1,0.4,0.2 

5,4,3,0.4,0.2 

7,6,5,0.4,0.2 

0.633333 

0.633333 

0.793333 

0.854762 

0.072222 

0.072222 

0.029669 

0.016207 

0.687893 

0.687893 

0.838294 

0.890095 

0.81286 

0.83464 

0.85668 

0.98425 

-0.609056 

-0.609056 

-0.783057 

-0.832623 

 

The statement refers to the skewness of the Three-Component Mixture of Power Distributions 

(3-CMPD). Skewness is a measure of asymmetry in the distribution. In a negatively skewed 

(or left-skewed) distribution, the tail on the left side is longer, and most of the data is 

concentrated on the right. 
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The entry highlights that, for the 3-CMPD, the Mean < Median < Mode, which is a 

characteristic of a negatively skewed distribution. 

 

8. Reliability properties of the 3-CMPD 

 

The reliability properties of a 3-CMPD are: 

 

8.1. Reliability Function (RF) 

 

The RF are evaluated by this formula as: 

  

𝑅(𝑥; Ψ) = 𝑤1𝑅1(𝑥; 𝛽1) + 𝑤2𝑅2(𝑥; 𝛽2) + (1 − 𝑤1 − 𝑤2)𝑅3(𝑥; 𝛽3) ,             (40) 

 

Where 𝑅𝑖(𝑥; 𝛽𝑖)  is the RF of the 𝑖𝑡ℎcomponent as: 

   

𝑅𝑖(𝑥; 𝛽𝑖) = 𝑥𝛽𝑖 , 0 ≤ 𝑥 ≤ 1, 𝛽𝑖 > 0, 𝑖 = 1, 2, 3. 

 

After simplification, RF is as: 

  

R(𝑥; Ψ) = 𝑤1𝑥𝛽1 + 𝑤2𝑥𝛽2 + (1 − 𝑤1 − 𝑤2)𝑥𝛽3                (41) 

 
Figure 2(a): Graphs of RF for different parametric values ( β_1,β_2,β_3,w_1,w_2 )  = (2, 3, 4, 0.1, 0.2), 

(2, 3, 4, 0.2, 0.3), (2, 3, 4, 0.3, 0.4), (2, 3, 4, 0.4, 0.5); 

Figure 2(b): Graphs of RF for different parametric values (β_1,β_2,β_3,w_1,w_2 )  = (4, 3, 2, 0.2, 0.1), 

(5, 4, 3, 0.3, 0.2), (6, 5, 4, 0.4, 0.3), (7, 6, 5, 0.5, 0.4); 

Figure 2(c): Graphs of RF for different parametric values (β_1,β_2,β_3,w_1,w_2 )  = (1, 2, 3, 0.4, 0.2), 

(3, 2, 1, 0.4, 0.2), (5, 4, 3, 0.4, 0.2), (7, 6, 5, 0.4, 0.2). 
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For some of the fixed values of component and the proportions parameter the behaviour of RF 

for the 3-CMPD is shown in Figure 2. The effect of component and proportion parameters 

β1, β2, β3 , 𝑤1 and 𝑤2 on the RF for the 3-CMPD can be observed from the Figures 4.1-4.3. 

The flexibility of the RF for 3-CMPD is also explain by these graphs. 

 

The parametric values of the RF of a 3-CMPD fixed in the Figures 2 are evaluated by using the 

expression in Equation (45). So, the numerical results of the reliability function or survival 

function, are obtained and are presented in Table-2.  

 

Table-2: Reliability Function of a 3-Component Mixture of Power Distributions 

𝛽1 , 𝛽2 , 𝛽3 ,  𝑤1,  𝑤2 X=1 X=2 X=3 X=5 X=7 

2,3,4,0.1,0.2 

2,3,4,0.2,0.3 

2,3,4,0.3,0.4 

2,3,4,0.4,0.5 

1 

1 

1 

1 

13.2 

11.2 

9.2 

7.2 

63 

50.4 

37.8 

25.2 

465 

355 

245 

135 

1754.2 

1313.2 

872.2 

431.2 

4,3,2,0.2,0.1 

5,4,3,0.3,0.2 

6,5,4,0.4,0.3 

7,6,5,0.5,0.4 

1 

1 

1 

1 

6.8 

16.8 

40 

92.8 

25.2 

102.6 

388.8 

1409.4 

155 

1125 

7375 

45625 

548.8 

5693.8 

52822 

460512 

3,2,1,0.4,0.2 

1,2,3,0.4,0.2 

5,4,3,0.4,0.2 

7,6,5,0.4,0.2 

1 

1 

1 

1 

4.8 

4.8 

19.2 

76.8 

13.8 

13.8 

124.2 

1117.8 

57 

57 

1425 

35625 

149.8 

149.8 

7340.2 

359670 

 

From the Figure 2 and the entries in Table-2, in general, it is shown that the RF for a 3-CMPD 

follows a decreasing trend over the time. In row 1 of the Table-2 when 𝛽1 < 𝛽2 < 𝛽3 the 

reliability function or the survival function decreases as the proportion parameters increase. On 

the other hand, in row 2 and 3 of the Table-2 when 𝛽1 > 𝛽2 > 𝛽3 the RF increases as 

component parameters increase. 

 

8.2. Hazard rate function 

 

The HRF for a X r.v. is defined as: 

  

ℎ(𝑥; Ψ) =
𝑓(𝑥;Ψ)

𝑅(𝑥;Ψ)
=

𝑤1𝑓1(𝑥;𝛽1)+𝑤2𝑓2(𝑥;𝛽2)+(1−𝑤1−𝑤2)𝑓3(𝑥;𝛽3)

𝑤1𝑅1(𝑥;𝛽1)+𝑤2𝑅2(𝑥;𝛽2)+(1−𝑤1−𝑤2)𝑅3(𝑥;𝛽3)
 , 

 

By putting the values of density function. 

 

 h(𝑥; Ψ) =
𝑤1𝛽1𝑥𝛽1−1+𝑤2𝛽2𝑥𝛽2−1+(1−𝑤1−𝑤2)𝛽3𝑥𝛽3−1

𝑤1𝑥𝛽1+𝑤2𝑥𝛽2+(1−𝑤1−𝑤2)𝑥𝛽3
 .                                       

 

For some of the fixed values of component and the proportion parameters, the behaviour of the 

HRF for 3-CMPD is shown in Figure 3. The effect of component and proportion parameters 

β1, β2, β3 , 𝑤1 and 𝒘𝟐 on the HRF for the 3-CMPD can be observed from the Figure 3. The 

flexibility of the HRF for the 3-CMPD is also explain by these graphs. 
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Figure 3(a): Graphs of HRF for different parametric values ( β1, β2, β3, 𝑤1, 𝑤2) = (2, 3, 4, 0.1, 0.2), (2, 

3, 4, 0.2, 0.3), (2, 3, 4, 0.3, 0.4), (2, 3, 4, 0.4, 0.5). 

Figure 3(b): Graphs of HRF for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (4, 3, 2, 0.2, 0.1), (5, 

4, 3, 0.3, 0.2), (6, 5, 4, 0.4, 0.3), (7, 6, 5, 0.5, 0.4).  

Figure 3(c): Graphs of HRF for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (1, 2, 3, 0.4, 0.2), (3, 

2, 1, 0.4, 0.2), (5, 4, 3, 0.4, 0.2), (7, 6, 5, 0.4, 0.2).  

 

The parametric values of the HRF of a 3-CMPD which fixed in the Figure 3 are evaluated by 

using the expression in an Equation (46). So, the numerical results of the HRF, are obtained 

and are presented in Table-3. 

 

Table-3: HR Function of a 3-Component Mixture of Power Distributions 

𝛽1 , 𝛽2 , 𝛽3 ,  𝑤1,  𝑤2 X=1 X=2 X=3 X=5 X=7 

2,3,4,0.1,0.2 

2,3,4,0.2,0.3 

2,3,4,0.3,0.4 

2,3,4,0.4,0.5 

3.6 

3.3 

3 

2.7 

1.90909 

1.82143 

1.69565 

1.5 

1.29524 

1.25595 

1.19048 

1.05952 

0.787097 

0.773239 

0.746939 

0.677778 

0.565044 

0.558102 

0.544141 

0.501623 

4,3,2,0.2,0.1 

5,4,3,0.3,0.2 

6,5,4,0.4,0.3 

7,6,5,0.5,0.4 

2.5 

3.8 

5.1 

6.4 

1.52941 

2.16667 

2.76 

3.32759 

1.13095 

1.52632 

1.89583 

2.25287 

0.73871 

0.955556 

1.16441 

1.36986 

0.544643 

0.693632 

0.83961 

0.984359 

1,2,3,0.4,0.2 

3,2,1,0.4,0.2 

5,4,3,0.4,0.2 

7,6,5,0.4,0.2 

2 

2 

4 

6 

1.25 

1.25 

2.25 

3.25 

0.898551 

0.898551 

1.56522 

2.23188 

0.568421 

0.568421 

0.968421 

1.36842 

0.413885 

0.413885 

0.699599 

0.985314 
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From the Figures 3 and the entries in Table-3, in general, it is shown that the HRF for a 3-

CMPD follows an increasing trend over the time. In row 1 of the Table-3 when 𝛽1 < 𝛽2 < 𝛽3 

the HRF increases as the proportion parameters increase. On the other hand, in row 2 and 3 of 

the Table-3 when 𝛽1 > 𝛽2 > 𝛽3 the HRF decreases when the component parameter increases. 

 

8.3. CHR and reversed hazard rate function 

 

The CHR H(𝑥; Ψ) and RHRF 𝑟(𝑥; Ψ) of a 3-CMPD for a X r.v. is defined as: 

 

𝐻(𝑥; Ψi) =  ∫ ℎ(𝑢; Ψi)𝑑𝑢
𝑥

0
  = - ln 𝑅(𝑥; Ψi), 

 

H(𝑥; Ψ) = −ln { 𝑤1𝑥𝛽1 + 𝑤2𝑥𝛽2 + (1 − 𝑤1 − 𝑤2)𝑥𝛽3} ,               (42) 

 

Also 

  

𝑟(𝑥; Ψ) =
𝑓(𝑥;Ψ)

𝐹(𝑥;Ψ)
=

𝑤1𝑓1(𝑥;𝛽1)+𝑤2𝑓2(𝑥;𝛽2)+(1−𝑤1−𝑤2)𝑓3(𝑥;𝛽3)

𝑤1𝐹1(𝑥;𝛽1)+𝑤2𝐹2(𝑥;𝛽2)+(1−𝑤1−𝑤2)𝐹3(𝑥;𝛽3)
 , 

 

 𝑟(𝑥; Ψ) =
𝑤1𝛽1𝑥𝛽1−1+𝑤2𝛽2𝑥𝛽2−1+(1−𝑤1−𝑤2)𝛽3𝑥𝛽3−1

𝟏−𝑤1𝑥𝛽1−𝑤2𝑥𝛽2−(1−𝑤1−𝑤2)𝑥𝛽3
.                (43) 

 

For some of the fixed values of component and the proportion parameters the behaviour of the 

CHR for the 3-CMPD is shown in Figure 4. The effect of component and proportion parameters 

β1, β2, β3 , 𝑤1 and 𝑤2 on the CHR for the 3-CMPD can be observed from the Figure 4. The 

flexibility of the CHR for the 3-CMPD is also explain by these graphs. 

 

Table-4: Cumulative Rate Function of a 3-Component Mixture of Power Distributions 

𝛽1 , 𝛽2 , 𝛽3 ,  𝑤1,  𝑤2 X=1 X=2 X=3 X=5 X=7 

2,3,4,0.1,0.2 

2,3,4,0.2,0.3 

2,3,4,0.3,0.4 

2,3,4,0.4,0.5 

0.277778 

0.30303 

0.333333 

0.37037 

0.52381 

0.54902 

0.333333 

0.666667 

0.772059 

0.796209 

0.84000 

0.94382 

1.27049 

1.29326 

1.3388 

1.47541 

1.76977 

1.79179 

1.83776 

1.99353 

4,3,2,0.2,0.1 

5,4,3,0.3,0.2 

6,5,4,0.4,0.3 

7,6,5,0.5,0.4 

0.40000 

0.263158 

0.196078 

0.15625 

0.653846 

0.461538 

0.362319 

0.300518 

0.884211 

0.655172 

0.527473 

0.443878 

1.35371 

1.04651 

0.858806 

0.73 

1.83607 

1.44169 

1.19103 

1.01589 

1,2,3,0.4,0.2 

3,2,1,0.4,0.2 

5,4,3,0.4,0.2 

7,6,5,0.4,0.2 

0.5000 

0.5000 

0.2500 

0.166667 

0.8000 

0.8000 

0.444444 

0.307692 

1.1129 

1.1129 

0.638889 

0.448052 

1.75926 

1.75926 

1.03261 

0.730769 

2.41613 

2.41613 

1.42939 

1.01491 

 

From the Figure 4 and the entries in the Table-4, in general, it is shown that the CHR for a 3-

CMPD follows an increasing trend over the time. In the row 1 of the Table-4, when the 𝛽1 <
𝛽2 < 𝛽3 the CHR increases as the proportion parameters increase. On the other hand, in the 

row 2 and 3 of the Table-4 when 𝛽1 > 𝛽2 > 𝛽3 the CHR decreases when the component 

parameter increases. 
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Figure 4(a): Graphs of CHR function for different parametric values ( β1, β2, β3, 𝑤1, 𝑤2) = (2, 3, 4, 0.1, 

0.2), (2, 3, 4, 0.2, 0.3), (2, 3, 4, 0.3, 0.4), (2, 3, 4, 0.4, 0.5). 

Figure 4(b): Graphs of CHR function for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (4, 3, 2, 0.2, 

0.1), (5, 4, 3, 0.3, 0.2), (6, 5, 4, 0.4, 0.3), (7, 6, 5, 0.5, 0.4). 

Figure 4(c): Graphs of CHR function for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (1, 2, 3, 0.4, 

0.2), (3, 2, 1, 0.4, 0.2), (5, 4, 3, 0.4, 0.2), (7, 6, 5, 0.4, 0.2).  

 
 

The parametric values of the cumulative rate function of a 3-CMPD which fixed in the Figure 

4 are evaluated by using the expression in an Equation (47). So, the numerical results of the 

CHR, are obtained and are presented in Table-4. 

 

8.4. MRL function  

 

MRL function for a X r.v. is defined as: 

  

𝑚(𝑥; Ψ) =
1

𝑅(𝑥;Ψ)
∫ 𝑢𝑓(𝑥; Ψ)𝑑𝑢

1

𝑥
− 𝑥 ,                         (44) 

  

 𝑚(𝑥; Ψ) =
1

𝑅(𝑥;Ψ)
{𝐸(𝑥) − ∫ 𝑢𝑓(𝑥; Ψ)𝑑𝑢

𝑥

0
} − 𝑥 ,                (45) 

 

After solving the integral ∫ 𝑢𝑓(𝑥; Ψ)𝑑𝑢
𝑥

0
 the value is 

 

𝑚(𝑥; Ψ) =
1

𝑤1𝑥𝛽1−𝑤2𝑥𝛽2−(1−𝑤1−𝑤2)𝑥𝛽3
{

𝑤1𝛽1

𝛽1+1
+

𝑤2𝛽2

𝛽2+1
+

(1−𝑤1−𝑤2)𝛽3

𝛽3+1
− ∫ 𝑢𝑓(𝑥; Ψ)𝑑𝑢

1

𝑥
} − 𝑥,    (46) 
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𝑚(𝑥; Ψ) =

𝑤1
𝛽1−1 

𝑥1−𝛽1 +
𝑤2

𝛽2−1 
𝑥1−𝛽2 +

1−𝑤1−𝑤2
𝛽3−1 

𝑥1−𝛽3 

𝑤1𝑥𝛽1+𝑤2𝑥𝛽2+(1−𝑤1−𝑤2)𝑥𝛽3
.                (47) 

 

For some of the fixed values of component and the proportion parameters the behaviour of the 

MRL function for the 3-CMPD is shown in Figure 5. The effect of parameters β1, β2, β3 , 𝑤1and 

𝑤2on the MRL function for the 3-CMPD can be observed from the Figure 5. The flexibility of 

the MRL function for the 3-CMPD is also explain by these graphs.   

 
Figure 5(a): Graphs of MRL function for different parametric values ( β1, β2, β3, 𝑤1, 𝑤2) = (2, 3, 4, 0.1, 

0.2), (2, 3, 4, 0.2, 0.3), (2, 3, 4, 0.3, 0.4), (2, 3, 4, 0.4, 0.5). 

Figure 5(b): Graphs of MRL function for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (4, 3, 2, 0.2, 

0.1), (5, 4, 3, 0.3, 0.2), (6, 5, 4, 0.4, 0.3), (7, 6, 5, 0.5, 0.4). 

Figure 5(c): Graphs of MRL function for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (1, 2, 3, 0.4, 

0.2), (3, 2, 1, 0.4, 0.2), (5, 4, 3, 0.4, 0.2), (7, 6, 5, 0.4, 0.2). 

       
 

The parametric values of the MRL function of a 3-CMPD which fixed in the Figure 5 are 

evaluated by using the expression in an equation (47). So, the numerical results of the MRL 

function, are obtained and are presented in Table-5. 

 

From the Figures 5 and the entries in Table-5, in general, it is shown that the MRL function for 

a 3-CMPD follows a decreasing trend over the time. In row 1 of the Table-5 when 𝛽1 < 𝛽2 <
𝛽3 the MRL function decreases as the proportion parameters increase. On the other hand, in 

row 2 and 3 of the Table-5 when 𝛽1 > 𝛽2 > 𝛽3 the MRL function increases when the 

component parameter increases. 
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Table-5: : MRL Function of a 3-Component Mixture of Power Distributions 

𝛽1 , 𝛽2 , 𝛽3 ,  𝑤1,  𝑤2 X=1 X=2 X=3 X=5 X=7 

2,3,4,0.1,0.2 

2,3,4,0.2,0.3 

2,3,4,0.3,0.4 

2,3,4,0.4,0.5 

0.43333 

0.51667 

0.60000 

0.683333 

0.007841 

0.014169 

0.023078 

0.037037 

0.0008426 

0.0017592 

0.0033137 

0.00644229 

0.00005562 

0.0001333 

0.0002816 

0.00068642 

0.0000096 

0.00004582 

0.00005408 

0.0001578 

4,3,2,0.2,0.1 

5,4,3,0.3,0.2 

6,5,4,0.4,0.3 

7,6,5,0.5,0.4 

0.816667 

0.391667 

0.25500 

0.188333 

0.0545343 

0.00449529 

0.00049188 

0.00057808 

0.0095777 

0.00030829 

0.00001742 

0.00000053 

0.00091957 

0.0000094 

0.00000012 

  0.000000 

0.00184429 

0.00000093 

0.00000 

0.00000 

1,2,3,0.4,0.2 

3,2,1,0.4,0.2 

5,4,3,0.4,0.2 

7,6,5,0.4,0.2 

0.633333 

0.633333 

0.263333 

0.170476 

0.100694 

0.100694 

0.00232205 

0.00009023 

0.0324745 

0.0324745 

0.00014144 

0.0000010 

0.00746199 

0.00746199 

0.0000041 

0.000000 

0.00278376 

0.00278376 

0.0000004 

0.000000 

 

8.5 MWT function 

 

MWT function is defined as: 

 

 𝜇̅(𝑥; Ψ) = 𝑥 − {
1

𝐹(𝑥;Ψ)
∫ 𝑥𝑓(𝑥; Ψ)𝑑𝑥

𝑥

0
} ,                 (48) 

 

By putting the result of equations (26) and (46) in (47) the result of the MWT function is as: 

 

𝜇̅(𝑥; Ψ) = 𝑥 − {
1

1−𝑤1𝑥𝛽1−𝑤2𝑥𝛽2−(1−𝑤1−𝑤2)𝑥𝛽3
∫ 𝑥𝑓(𝑥; Ψ)𝑑𝑥

𝑥

0
} ,     

 

 

𝜇̅(𝑥; Ψ) =
𝑥− 

𝑤1
−𝛽1−1 

[𝑥𝛽1+1 −1]+
𝑤2

−𝛽2−1 
[𝑥𝛽2+1 −1]+

1−𝑤1−𝑤2
−𝛽3−1 

[𝑥𝛽3+1 −1]

1−𝑤1𝑥𝛽1−𝑤2𝑥𝛽2−(1−𝑤1−𝑤2)𝑥𝛽3
                                      (49)  

 

Table-6: MWT Function of a 3-Component Mixture of Power Distributions 

𝛽1 , 𝛽2 , 𝛽3 ,  𝑤1,  𝑤2 X=1 X=2 X=3 X=5 X=7 

2,3,4,0.1,0.2 

2,3,4,0.2,0.3 

2,3,4,0.3,0.4 

2,3,4,0.4,0.5 

0.002404 

0.023889 

0.03122 

     0.03037 

0.272404 

0.263889 

0.25122 

0.230376 

0.576559 

0.585695 

0.601087 

0.632507 

1.00796 

1.02392 

1.05426 

1.13443 

1.41298 

1.42996 

1.46414 

1.56839 

4,3,2,0.2,0.1 

5,4,3,0.3,0.2 

6,5,4,0.4,0.3 

7,6,5,0.5,0.4 

0.02123 

0.02937 

0.06326 

0.042316 

0.21523 

0.269937 

0.26326 

0.242316 

0.609366 

0.522441 

0.445679 

0.386288 

1.06814 

0.871139 

0.736082 

0.638559 

1.46959 

1.20286 

1.02125 

0.888825 

1,2,3,0.4,0.2 

3,2,1,0.4,0.2 

5,4,3,0.4,0.2 

7,6,5,0.4,0.2 

0.049123 

0.039123 

0.021429 

0.03451 

0.149123 

0.149123 

0.271429 

0.2451 

0.651042 

0.651042 

0.513095 

0.390393 

1.25833 

1.25833 

0.859522 

0.640016 

1.7836 

1.7836 

1.19202 

0.888612 
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For some of the fixed values of component and the proportion parameters the behaviour of the 

MWT function for the 3-CMPD is shown in Figure (6). The effect of component and proportion 

parameters β1, β2, β3 , 𝑤1 and 𝑤2 on the MWT function for the 3-CMPD can be observed from 

the Figure (6). The flexibility of the MWT function for the 3-CMPD is also explain by these 

graphs. 

 
Figure 6(a): Graphs of MWT function for different parametric values ( β1, β2, β3, 𝑤1, 𝑤2) = (2, 3, 4, 

0.1, 0.2), (2, 3, 4, 0.2, 0.3), (2, 3, 4, 0.3, 0.4), (2, 3, 4, 0.4, 0.5). 

Figure 6(b): Graphs of MWT function for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (4, 3, 2, 0.2, 

0.1), (5, 4, 3, 0.3, 0.2), (6, 5, 4, 0.4, 0.3), (7, 6, 5, 0.5, 0.4). 

Figure 6(c): Graphs of MWT function for different parametric values (β1, β2, β3, 𝑤1, 𝑤2) = (1, 2, 3, 0.4, 

0.2), (3, 2, 1, 0.4, 0.2), (5, 4, 3, 0.4, 0.2), (7, 6, 5, 0.4, 0.2). 

 
 

The parametric values of the MWT function of a 3-CMPD which fixed in the Figure 6 are 

evaluated by using the expression in an Equation (49). So, the numerical results of the MWT 

function, are obtained and are presented in Table-6. 

 

From the Figure 6 and the entries in Table-6, in general, it is shown that the MWT function for 

a 3-CMPD follows an increasing trend over the time. In row 1 of the Table-6 when 𝛽1 < 𝛽2 <
𝛽3 the MWT function increases as the proportion parameters increase. On the other hand, in 

row 2 and 3 of the Table-6 when 𝛽1 > 𝛽2 > 𝛽3 the MWT function decreases when the 

component parameter increases. 

 

9. Statistical functions of the 3-CMPD 

 

The different types of statistical functions of a 3-CMPD are given as: 
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9.1. MGF of 3-CMPD 

 

The MGF of a 3-CMPD for a X r.v. is derived as: 

  

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥),          

  

𝑀𝑋(𝑡) = 𝑤1 ∫ 𝑒𝑡𝑥𝛽1𝑥𝛽1−1𝑑𝑥
1

0
+ 𝑤2 ∫ 𝑒𝑡𝑥𝛽2𝑥𝛽2−1𝑑𝑥

1

0
+ (1 − 𝑤1 − 𝑤2)      

 

            ∫ 𝑒𝑡𝑥𝛽3𝑥𝛽3−1𝑑𝑥
1

0
                               (50) 

                                                   

9.2. CF of 3-CMPD 

 

The CF of a 3-CMPD for a X r.v. is obtained as: 

 

  𝜑𝑋(𝑡) = 𝐸(𝑒𝑖𝑡𝑥),          

 

The CF of 3-CMPD is: 

  

𝜑𝑋(𝑡) = 𝑤1 ∫ 𝑒𝑖𝑡𝑥𝛽1𝑥𝛽1−1𝑑𝑥
1

0
+ 𝑤2 ∫ 𝑒𝑖𝑡𝑥𝛽2𝑥𝛽2−1𝑑𝑥

1

0
+ (1 − 𝑤1 − 𝑤2)  

 

               ∫ 𝑒𝑖𝑡𝑥𝛽3𝑥𝛽3−1𝑑𝑥
1

0
                    (51) 

 

10. Conclusion 

 

A Three-Component Mixture of Power Distributions (3-CMPD) has been introduced, with 

several fundamental statistical properties derived and analysed. These include key metrics such 

as the mean, median, variance, and quantile function. Additionally, the moments of the origin, 

negative moments, factorial moments, and the coefficient of skewness are discussed. 

Mathematical expressions for important related statistical functions have also been derived, 

including the reliability functions, moment generating function, characteristic function, 

probability generating function, and factorial moment generating function. The study further 

explores the expressions of three critical entropy measures: Shannon’s entropy, -entropy, and 

Renyi’s entropy. Moreover, the mathematical expressions for various inequality indexes, such 

as the Gini index, Lorenz curve, Bonferroni curve, Zenga index, Atkinson index, and the 

Generalized entropy index, are analysed. 

 

In the context of reliability analysis, several key functions are derived and discussed: the 

Reliability Function (RF), Hazard Rate Function (HRF), Cumulative Hazard Rate (CHR) 

function, Reversed Hazard Rate (RHR) function, Mean Residual Life (MRL) function, and 

Mean Waiting Time (MWT) function. The study includes numerical evaluations and graphical 

representations to illustrate the behaviour of these reliability properties across different 

parameter values and component proportions. This comprehensive analysis provides a robust 

mathematical foundation for understanding the statistical and reliability properties of the 3-

CMPD, offering valuable insights for applications where mixture distributions are relevant.
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